ORAC L

Agile Product Lifecycle Management

AIS Developer Guide
v9.3..0.1

Part No. E15929-01
November 2009

AIS Developer Guide

Oracle Copyright

Copyright © 1995, 2009, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as
expressly permitted in your license agreement or allowed by law, you may not use, copy,

reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish or
display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be
error-free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject
to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR
52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500
Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is
not developed or intended for use in any inherently dangerous applications, including applications
which may create a risk of personal injury. If you use this software in dangerous applications, then
you shall be responsible to take all appropriate fail-safe, backup, redundancy and other measures
to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for
any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be
trademarks of their respective owners.

This software and documentation may provide access to or information on content, products and
services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third party content, products and
services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages
incurred due to your access to or use of third party content, products or services.

i Agile Product Lifecycle Management

CONTENTS

(0] = Ted [N 070)Y/ 1o | | S ST SPPPI ii
What's NeW in Release 9.3.0.17 ... et e e et e e e e e e e st e e e e e e e e e nnreeeeeas Vi
g Lo T [T ot o) 7
UNAerstanding AlSot n e s 7
KBY FRAIUIES ...ttt bbb Rt E bbbt b e n e 8
L 37 01111 (=T 0 - TR 9
AIS FOIAETScvtievietie ettt ettt bbbt 9
Understanding AlS WED SErviCeS ... e 10
WED SEIVICES ATCIITECIUIEvuvevececicicteieicist ettt ettt ettt bbb bbbttt b st 1
A= oIS Y= AV [T @ o= = 1 o] o I S 1
WED ServiCes EXIENSIONS.coiiiiiiii ittt nb e b e 13
Security CONSIAEIAtIONSoiuiiiiiiiiie e e st e e et e e e e st e e e e snbe e e e e anbeeeeenees 13
Using AIS Web ServiCeS .iuuiimuiimuiimmimnsimasiasmiasmsssisssmsssmsssisssmsssmsssssssssssnssssnsssnsssnsssnsssnssnnnss 15
L 1YY TSR 15
L0 Lo OO 15
Client Programming LANGUAGESc.euiviiiriieieinieiseiste ettt bbb 15
ACCESSING AIS WED SEIVICESvurviieiiieiieiiieseisiet ettt ssb ettt s bbbt s bt n bt en et 16
ChecKing YOUr ALS SYSEIMeiiiiiiiie et e e e e e e e e e e e e 16
ADOUL AIS JAVA SAMIPIES......cco ittt e nraees 16
INSLAllNG the JAVA SDKviiieiicc bbb bbb bbb b bbb 17
INSEAIING ANT. ... b bbb 17
BUIldING the JaVa SAMPIEScocveiicecice ettt a b b a bbb be s 18
RUNNING the JAVA SBMPIESceiiiiei bbb 19
Creating @ Web Service ClIENtoo o 27
Generating the SOAP REQUESE ..o 27
Agile and Non-Agile WeD SEIVICE CIENESccviecveiiiciieiciece ettt st 28
Submitting the SOAP REGUESTc.vieiieieie et 28
Processing the SOAP RESPONSE. ... bbb 28
Extracting Agile Objects and Attachmentsicccummmimmminmmesinme i 29
Understanding Web Service OperationS..........cooiuiiiiiiiiieiie e 29
Using the exportData Web Service Operationccccouiiiiiiiiiiiiiie e 29
WOTKING WIth QUETIES ...ttt bbbttt 30
WOTKING WItN SIS ...v.vvviecicicieceit ettt stttk b bbbt n st 30
WOTKING WItH FlEEIS ...ttt bbbttt 31

v9.3..0.1 ii

AIS Developer Guide

WOIKING WIth FOMMATSc.ecieice ettt es bbbttt 32
Using the exportPartlist Web Service Operation..............ceeiiiii oo 33
Working with eXportPartliSt QUETIESc..cviuiuieriiriereiriireireire ettt 33
Working With @XpOrtPariSt FIETS ..ottt 34
40T Lo T T D T | - 35
Understanding the Web Service Import FEatUre..........ccueviiiiiii i 35
Using the importData Web Service Operationoocciiiiiii e 35
SPECITYING DAIA TYPES.....rieerieeieiietreieiet sttt bbbt 36
WOrKiNg With DA SOUICEScucvuivireiiieiieicisteisiss ettt et ettt b b s bbbt n b 36
WOTKING WIth OPEFALIONScveieirieiieiciseiei ettt 37
WOIKING WIth IMAPPINGSv.eeeeeiceetreeiet sttt es bbbt bbbt bbbt 38
WOrKING WIth TRANSTOMMSc..cviieiierici ettt 38
WOTKING WIth OPHONScviiiciiicicieisee sttt bbbttt b st 39
AN IMPOMDALA EXAMPIEveeeieeieeeer ettt sttt et as e s bbb st s et st enen 40
Using the validData Web Service OPErationccccicueiieiiciisce ettt ss bbb 41
IMPOTtiNG SUPPHEr RESPONSESvuveeeeieiirieeie ettt sese ettt e st ennet e 41
IMPOrtiNG Data ValUES ...ttt ettt e e st e e e s e e e s enneeeas 42
Setting the Preferred Date Format and TiMe ZONE ..o 42
SUPPOMEA DAte FOMMALSocvicvii ettt b bbb s ettt tes 42
SPECIYING TIME ZONES ... ovrveieereteie ettt bbb bbbt bbb 44
aXML and PDX Package Date FOMMALS.........cccciviviicciciccsss et nnnns 44

iv Agile Product Lifecycle Management

Preface

The Agile PLM documentation set includes Adobe® Acrobat PDF files. The Oracle Technology
Network (OTN) Web site http://www.oracle.com/technology/documentation/agile.html contains the
latest versions of the Agile PLM PDF files. You can view or download these manuals from the Web
site, or you can ask your Agile administrator if there is an Agile PLM Documentation folder available
on your network from which you can access the Agile PLM documentation (PDF) files.

Note To read the PDF files, you must use the free Adobe Acrobat Reader version 7.0 or later.
This program can be downloaded from the Adobe Web site http://www.adobe.com.

The Oracle Technology Network (OTN) Web site
http://www.oracle.com/technology/documentation/agile.html can be accessed through Help >
Manuals in both Agile Web Client and Agile Java Client. If you need additional assistance or
information, please contact support http://www.oracle.com/agile/support.htmi
(http://www.oracle.com/agile/support.html) for assistance.

Note Before calling Oracle Support about a problem with an Agile PLM manual, please have
the full part number, which is located on the title page.

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services within the
United States of America 24 hours a day, 7 days a week. For TTY support, call 800.446.2398.
Outside the United States, call +1.407.458.2479.

Readme

Any last-minute information about Agile PLM can be found in the Readme file on the Oracle
Technology Network (OTN) Web site http://www.oracle.com/technology/documentation/agile.html

Agile Training Aids

Go to the Oracle University Web page
http://www.oracle.com/education/chooser/selectcountry _new.html for more information on Agile
Training offerings.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an otherwise empty line;
however, some screen readers may not always read a line of text that consists solely of a bracket or
brace.

This documentation may contain links to Web sites of other companies or organizations that Oracle
does not own or control. Oracle neither evaluates nor makes any representations regarding the
accessibility of these Web sites.

v9.3..0.1 v

http://www.oracle.com/technology/documentation/agile.html
http://www.adobe.com/
http://www.oracle.com/technology/documentation/agile.html
http://www.oracle.com/agile/support.html
http://www.oracle.com/agile/support.html
http://www.oracle.com/technology/documentation/agile.html
http://www.oracle.com/education/chooser/selectcountry_new.html

What's New in Release 9.3.0.17?

There are no new features, or enhancements and changes to existing features in this release of
Agile Integration Services.

vi Agile Product Lifecycle Management

Chapter 1
Introduction

This chapter includes the following:

UNAErSTANAING AlS ..o et b s e b st bRttt e b 7

Understanding AlS WED SEIVICES ..ot 10
WED SErvICES OPEIAtIONSouviiicecie et 11
WED SEIVICES EXIENSIONSveieice ettt ettt nen e 13
SeCUrity CONSIAETALIONSc.cveiieiieiciei ettt b e b bbb bbb bbb s ans 13

Understanding AIS

The Agile Integration Services (AIS) are a collection of predefined Web Services in the Agile
Integration Framework that enable communication between the Agile Application Server and
disparate systems including:

o Enterprise Resource Planning (ERP) systems

o Customer Resource Management (CRM) systems

o Business-to-Business Integration systems (B2B)

o Other Agile PLM systems, and supply chain partners.

Using AIS to exchange content with other systems simplifies the process for aggregating
unprocessed product content, and makes critical product content available in real time to other
systems. AlIS Web Services also provide import and export capabilities that you can use to:

o Make product content available to Enterprise Application Integration (EAI) systems

o Share product content with product design, manufacturing planning, shop floor, ERP) and CRM
applications

o Make product content available to B2B systems which can transfer Agile Application Server
data across corporate boundaries to external applications

o Provide content to custom applications

o Import product content data from ERP and other supply-chain applications

v9.3..0.1 7

AIS Developer Guide

Key Features

Key features supported by AIS include:

u]

Programmatic access to data — AIS supports programmatic access to data stored in Agile PLM
systems

Programmatic validation of imported data— Using the Agile SDK methods, AIS enables checking
the imported data for compliance with server rules before they are actually imported

Product content accessibility — AIS provides accessibility to Agile product content outside of
corporate firewall using standard HTTP(S) technology.

Apache Axis support — Agile Web Service Extensions (WSX) are based on the Apache
eXtensible Interaction System (Axis) package and Agile certifies client applications that use the
Axis package client

Note Export and Import attachment types are not compatible with the .Net attachment types.

Multiple output format support — AIS supports the aXML and Product Data eXchange (PDX) 1.0
formats (PDX is defined in Web Services Operations).

Internet Security safeguards — AIS communicates with XML-compliant applications using Internet
-standard communication and security protocols (HTTP and SSL), for a secure and firewall-
friendly interface

Multilevel BOM support — AIS supports converting a multilevel BOM into individual parts data in
the XML format

Agile Product Lifecycle Management

Chapter 1: Introduction

AIS Architecture

Connection to AlS is established using standard Web service invocation methodologies shown in
the following illustration.

AIS Client

Web Service 4+—> Other
Client Applications
IHTTP(S}
Web Server

I

Agile Application Server

Agile Integration
Services

WSX Framework

SDK

AIS Folders

The AIS documentation and source files for sample clients are contained in the AIS_samples.zip
file. You can find this folder in the Oracle Agile Product Lifecycle Management Media Pack at
Oracle E-Delivery Web site (http://edelivery.oracle.com/). For more information about the Oracle
Media Pack and procedures to access the contents, contact your System Administrator, or refer to
your Agile PLM installation Guide.

The AIS_samples.zip file includes the following folders:

o documentation —- Documents the Web Services that are supported by the Agile Import/Export
APls

o Jib— Contains the common JAR files used by AIS samples

o sample — Contains the source code of a sample Import/Export Web service client

v9.3..0.1 9

http://edelivery.oracle.com/

AIS Developer Guide

Understanding AIS Web Services

AIS Web Services is a technology for building distributed applications. These services, which are
available over the Internet, use a standardized XML messaging system and are not tied to any one
operating system or programming language. Through Web Services, you can encapsulate existing
business processes, publish them as services, search for and subscribe to other services, and
exchange information throughout and beyond the enterprise. Web Services are based on
universally agreed upon specifications for structured data exchange, messaging, discovery of
services, interface description, and business process design.

A Web service makes remote procedure calls (RPC) across the Internet. It uses:
o HTTP(S) or other transport protocols such as HTTP to transport requests and responses

o Simple Object Access Protocol (SOAP) to communicate the request and response information

The key benefits of Web Services are:

o Service-oriented Architecture (SOA) — Unlike packaged products, Web Services can be delivered
as streams of services that allow access from any platform. SOAs are a new approach to
enterprise application integration by building applications from software services.

= Interoperability — Web Services ensure complete interoperability between systems.

= Integration — Web Services facilitate flexible integration solutions, particularly if you are
connecting applications running on different platforms or written in different languages.

o Modularity — Web Services offer a modular approach to programming. Each business function
in an application can be exposed as a separate Web service. Smaller modules reduce errors
and result in more reusable components.

o Accessibility — Business services can be completely decentralized. They can be distributed over
the Internet and accessed by a wide variety of communications devices.

o Efficiency — Web Services constructed from applications meant for internal use can be used
externally without changing code. Incremental development using Web Services is relatively
simple because Web Services are declared and implemented in a human readable format.

Web Services have certain limitations of the technology as it exists today, for example, supported
software and specifications, problems using certain versions of applications or tools. In view of
these constraints, consider the following when developing Web service applications:

o When developing Web service applications, avoid advanced operations such as distributed
garbage collection, object activation, or call by reference. SOAP as a simple mechanism for
handling data and requests over a transport medium is not designed to handle these
operations.

o Web Services are network-based and are therefore affected by network traffic. The latency for
any Web service invocation can often be measured in hundreds of milliseconds. Thus, the
extent of functionality provided by the service must be significant enough to warrant making a
high-latency call.

o Web Services do not work well with conversational programming languages. Thus, when
designing services that you want to expose, make the service as independent as possible from
these development tools.

10 Agile Product Lifecycle Management

Chapter 1: Introduction

Web Services Architecture

Web services architecture is best defined in terms of its roles and protocol stack:

8 Web service roles:

Service provider - Provider of the service by Implementing and making it available on the
Internet

Service requester — User of the service who accesses the service by opening a network
connection and sending an XML request

Service registry — A centralized directory of services where developers can publish new
services or find existing ones

= Web service protocol stack:

Note

Service transport layer — Uses HTTP to transport messages between applications. Other
transports will be supported in future AlS releases

XML messaging layer — Encodes messages in XML format by using SOAP, a platform-
independent XML protocol used to exchange information between computers. It defines an
envelope specification for encapsulated data being transferred, the data encoding rules,
and RPC conventions

Service description layer — Describes the public interface to a specific Web service by using
the Web Service Description Language (WSDL) protocol

= WSDL defines an XML grammar for describing network services as collections of
communication endpoints capable of exchanging messages, which contain either
document-oriented or procedure-oriented information. The operations and messages
are described abstractly, and then bound to a network protocol and message format

= WSDL allows description of endpoints and their messages regardless of what
message formats or network protocols are used to communicate

= A WSDL document defines services as collections of network endpoints (called ports).
A port is defined by associating a network address with a reusable binding. A
collection of ports defines a service

Service discovery layer - Centralizes services into a common registry by using the Universal
Description, Discovery, and Integration (UDDI) protocol

AIS Web services do not currently support UDDI or other service discovery layers.

Web Services Operations

AIS enable you to export data programmatically into structured XML documents and import data
into the Agile PLM system with the following prebuilt Web service operations:

o exportData— A Web service operation that extracts data from an Agile PLM system. The
exportDataRequest element encapsulates all the information needed to extract data from
an Agile PLM system. The ExportData Web service operation supports the following formats:

Product Data eXchange (PDX) — A standardized XML format for representing structured
product content. It provides a means for partners in the e-supply chain (OEMs, EMS
providers, and component suppliers) to exchange product content and changes (BOMs,
AMLs, ECRs, ECOs).

v9.3..0.1

11

AIS Developer Guide

For more information about PDX, including a link to the DTD, visit the following site:
http://webstds.ipc.org/2571/2571.htm

® Agile XML (also known as aXML) — Agile XML format is an XML representation of Agile's
business schema. aXML contains all product content managed in Agile such as items,
change details, manufacturer information, cost, drawings and other files. As a
representation of schema elements across all Agile products, aXML will evolve with Agile's
business schema over time

The list and location of Agile aXML schema files for different releases of the application are

available at the following sites:

= Release 8.5 —
http://www.oracle.com/technology/products/applications/xml/plm/2003/12/aXML.xsd

= Release 9.0 —
http://www.oracle.com/technology/products/applications/xml/plm/2004/02/aXML.xsd

= Release 9.0SP4 —
http://www.oracle.com/technology/products/applications/xml/plm/2004/12/aXML.xsd

= Release 9.1 -
http://www.oracle.com/technology/products/applications/xml/plm/2004/10/aXML.xsd

= Release 9.2,9.2.0.x —
http://www.oracle.com/technology/products/applications/xml/plm/2005/11/aXML.xsd

= Release 9.2.1,9.2.1.x -
http://www.oracle.com/technology/products/applications/xml/plm/2006/03/aXML.xsd

= Release 9.2.2,9.2.2.1,9.2.2.2, 9.2.2.3 — http://www.oracle.com/technology/
products/applications/xml/plm/2007/03/aXML.xsd

= Release 9.2.2.4, 9.2.2.5, 9.2.2.6, 9.2.2.7 — http://www.oracle.com/technology/
products/applications/xml/plm/2008/05/aXML.xsd

= Release: 9.3,9.3.0.1 —
http://www.oracle.com/technology/products/applications/xml/plm/2009/06/aXML.xsd

exportPartList — A Web service operation that takes a multilevel BOM and “flattens” it into a list
of the items and associated manufacturer parts in and their quantities in the BOM; it then
returns the data in aXML format. That is, it enables you to extract a rolled up set of parts, and
the related Quantities Per Top Level Assembly (QPTLA). The exportPartlistRequest
element encapsulates all the information needed to extract a flattened partlist from an Agile
PLM system.

Note The value of the QPTLA is computed as the sum over recursive products starting from

the top of the BOM tree. exportPartlist calculates the QPTLA for each unique item-
revision pair, and returns the results in the Part Quantities element of the resulting axML
output.

importData — A Web service operation that imports data into the Agile PLM system. The
importDataRequest element encapsulates all the information needed to request an import
operation. The source for the import data can be an Agile database, a third party Product Data
Management (PDM) system, or an Enterprise Resource Planning (ERP) system. The Agile
server stores information about customer-specific items. It also maintains the relationships that
assembly parts have with BOM components and that parent items have with approved
manufacturers.

importSupplierResponse — A Web service operation that imports an RFQ response from a
supplier. The response is associated with an existing RFQ in the Agile PLM system.

12

Agile Product Lifecycle Management

http://webstds.ipc.org/2571/2571.htm
http://www.oracle.com/technology/products/applications/xml/plm/2003/12/aXML.xsd
http://www.oracle.com/technology/products/applications/xml/plm/2004/02/aXML.xsd
http://www.oracle.com/technology/products/applications/xml/plm/2004/12/aXML.xsd
http://www.oracle.com/technology/products/applications/xml/plm/2004/10/aXML.xsd
http://www.oracle.com/technology/products/applications/xml/plm/2005/11/aXML.xsd
http://www.oracle.com/technology/products/applications/xml/plm/2006/03/aXML.xsd
http://www.oracle.com/technology/
http://www.oracle.com/technology/
http://www.oracle.com/technology/products/applications/xml/plm/2009/06/aXML.xsd

Chapter 1: Introduction

Note The importSupplierResponse Web service operation is deprecated and may not be
supported in future releases. Use importData instead. For more information, see
Importing Supplier Responses on page 41.

These Web service operations are invoked by submitting a properly formatted XML document to

AIS. The contents of the XML document define the parameters that determine how the operation
should be performed. For more information about using the prebuilt AIS Web Services, see Using
AIS Web Services on page 15.

Web Services Extensions

You can use the Agile SDK to develop Web service extensions (WSX) that leverage the
functionality of AIS while extending the functionality of the Agile PLM system. For example, if you
need to extract data from the Agile server and then transform it before sending it to another ERP
system, you could create a custom Web service that leverages the Export web service. For more
information about web service extensions, refer to the Agile SDK Developer Guide.

Security Considerations

AIS communicate with XML-compliant applications using Internet-standard communication and
security protocols (HTTP and SSL). Communication between AIS and its clients (via the Web
server) may be encrypted via Secure Sockets Layer (SSL) and a server-side certificate, thus
providing authentication, privacy, and message integrity. Using standard Java cryptography
libraries, you can encrypt and decrypt files, create security keys, digitally sign a file, and verify a
digital signature.

User name and password security is enforced whenever a client attempts to invoke an Agile
Integration Service operation.

For more information about Java security and cryptography support, refer to the following Web
page: http://java.sun.com/j2se/1.5.0/docs/quide/security/index.html.

v9.3..0.1 13

http://java.sun.com/j2se/1.5.0/docs/guide/security/index.html

Chapter 2
Using AIS Web Services

This chapter includes the following:

B OVBIVIBW ..ottt 15

5 Checking YOUI AIS SYSIEM ..ot 16

5 ADOUL AIS JAVA SAMPIEScvirieceiei s 16

= Creating @ Web ServiCe ClIENT....... ..o 26
Overview

This chapter provides the following information:
@ Tools that you can use to develop client applications

o Languages that can generate and process XML and process HTTP request/response
messages

o General steps to access the prebuilt AIS Web Services

The examples in the AIS_sample folder illustrate these steps.
Tools

There is no single tool set to access Web Services. Tools that you choose are a function of the
environment that you use to develop your clients. Essentially, you need tools to enable generating
and processing XML files and HTTP request/response messages.

Note Although AIS is based on Axis, which is a SOAP processor, you can use other

implementations of SOAP tools regardless of the source language to build Web service
clients.

Client Programming Languages
Oracle recommends, tests, and certifies Java to develop AlS clients.

Note WSDL is only supported with J2EE.
This is a list of some of the Websites where you can find more information about these development
tools:

@ Apache Axis — Open source SOAP implementation for Java. See the following Website:
http://ws.apache.org/axis/

o GlassFish Application Server — GlassFish is a complete Java EE 5 Application Server. See Java
Web Services Developer Pack at htips://glassfish.dev.java.net/public/downloadsindex.html.

v9.3..0.1 15

http://ws.apache.org/axis/
https://glassfish.dev.java.net/public/downloadsindex.html

AIS Developer Guide

= Microsoft .Net — An XML Web Services platform for Microsoft Windows that can be used to
create Web service clients. See the following Website for more information:
http://msdn.microsoft.com/net

Note AIS was only tested with Java. Other tools and environments such as VB .Net
should work, but AIS was not tested and is not supported for these tools and
environments (operability with .Net (Visual C#) was tested with an earlier version of
AIS).

o SOAP::Lite for Perl — A Perl implementation of the SOAP protocol. See the following Website:
http://www.soaplite.com/

Accessing AIS Web Services

In general, to access AIS Web Services, you need to:

1. Generate a SOAP request — In many cases, a Web-Service-aware code library will be able to
generate client-side stubs that generate an appropriately formatted SOAP request.

2. Submit that request to AIS via HTTP or HTTPS — Once an appropriate set of client-side Java
stubs are generated, a client application can use these stubs to submit a request.

3. Process the SOAP response — The client-side stubs usually are responsible for processing the
SOAP response and converting the response into an appropriate set of return objects.

The AIS samples provide comprehensive examples of how SOAP and Web service-related libraries
can make this process simple. The following sections illustrate using the ExportData sample in
Running the Java Samples on page 19 and the above steps in greater detail.

Checking Your AIS System

Before compiling and running the AIS Web service client samples, make sure the clients are
functioning properly on the Agile PLM Application Server. For more information, refer to the Agile
PLM Installation Guide.

About AIS Java Samples

AIS provide several Java Web service client samples for you to download. These samples use Axis
to connect with the AIS Web service engine to generate client-side stubs. You can use these
sample clients to export and import data. They provide command-line interfaces to the ExportData,
ExportPartlist, and ImportData Web service operations.

16 Agile Product Lifecycle Management

http://msdn.microsoft.com/net
http://www.soaplite.com/

Chapter 2: Using AIS Web Services

Important These AIS Java samples do not expose all AIS functionalities. They are only sample
clients. For example, they enable running only one query at a time, while AIS supports
runing multiple queries and then aggregating the results. You may choose to develop
AIS clients with additional functionality. The samples provide source code that you can
use to practice developing your own AIS clients. For more information about
functionalities supported by the Export and Import Web Services, refer to the Export
and Import XML Schema documentation in Agile PLM's Import/Export Guide v9.3.

Before building and running the AIS samples, download the following required tools:

o Java 2 SDK SE Version 1.5. You can download this software at:
http://java.sun.com/javase/downloads/index_jdk5.jsp

o The Apache Project's Ant build tool, version 1.6, available at: http://ant.apache.org/

Installing the Java SDK

This section provides instructions to install the Java SDK on Windows and on Solaris platforms. You
can skip this section if you already have the proper version of Java installed.

To install the Java SDK on Windows:
1. Double-click the distribution and follow the installation procedures.

2. Setthe system variable JAVA HOME to point to the home directory of your Java SDK
installation (for example, D: \§2sdk150).

To install the Java SDK on Solaris:

1. Execute the distribution (for example, $./ j2sdk-1 5 0-solaris-sparc.sh)and follow
the installation procedures.

2. Set the environment variable JAVA HOME to point to the home directory of your Java SDK
installation (for example, /home/<user>/52sdk150).

3. Execute your .profile or .cshrc (depending on your shell) file to set up your environment.

Installing Ant

This section provides the instructions for installing Ant on Windows and on Solaris.

To install the Ant on Windows:

1. Extract the contents of the ZIP archive to a local directory and follow the installation
procedures.

The Ant distribution for Windows is a ZIP file (for example, apache-ant-1.6.0-bin.zip).

2. Open a command prompt window and verify that Ant can be invoked by entering the following
command: $ANT HOME%$\bin\ant -version

The following output should be displayed: Apache Ant version 1.6.0 compiled on date

v9.3..0.1 17

http://java.sun.com/javase/downloads/index_jdk5.jsp
http://ant.apache.org/

AIS Developer Guide

To install the Ant on Solaris:

1.

Extract the contents of the tar archive to a local directory (for example, /home/user/ant) and
follow the procedures.

The ANT distribution for UNIX is a tar file (for example, apache-ant-1.6.0-bin.tar.gz).
Execute your .profile or .cshrc (depending on your shell) file to set up your environment.

From a command prompt, verify that Ant can be invoked by entering the following command:
SANT HOME/bin/ant -version

Upon successful installation, the following message appears:

Apache Ant version 1.6.0 compiled on <date>.

Building the Java Samples

Building the Java samples is straightforward. You need the Ant build tool, which is available for
download at: http://ant.apache.org/. For procedures, see Installing Ant on page 17. Run Ant within
the samples directory, pointing the URL to your AlS installation.

Note If you generated client stubs for the AIS samples from the WSDL, they will run on any

other computer. Alternately, if you have the WSDL, you can use it to generate the client
stubs on another computer.

To build the AIS Java samples on Windows:

1.

Download wsd145-1.5.1.jar from http://archive.apache.org/dist/ws/axis/1_2/(axis-bin-

1 2.zip#/lib).

Copy the contents to the ais/1ib folder and rename it to wsd147.jar.

3. Open a command prompt window and navigate to the AlS samples folder which contains the
file build.xml.
4. Type the following command:
$ANT HOMES%\bin\ant -Dais.url=https://<hostname:port/virtualPath>/ws -
Dusername= <username> -Dpassword= <password target>
Where:
®* hostname — This is name of the Agile server.
* port — This is the application server port. If you are using an Oracle Application Server to
host the Agile PLM system, type 7777. If you are using BEA WebLogic Server, type 7001.
®* virtualPath — This is the virtual path for your Agile server. The virtual path is specified
when the Agile PLM system is installed. The default virtual path is “Agile”. For more
information, refer to Agile PLM Installation and Upgrade Guide.
®* target — This identifies the AIS sample to build. Available build targets are export,
import, and all. The default targetis al1. If you do not specify a target, all AIS samples
will be built.
® username — Thisis the Agile PLM user ID.
® password— This is the Agile PLM password.
18 Agile Product Lifecycle Management

http://ant.apache.org/
http://archive.apache.org/dist/ws/axis/1_2/(axis-bin-1_2.zip#/lib)
http://archive.apache.org/dist/ws/axis/1_2/(axis-bin-1_2.zip#/lib)

Chapter 2: Using AIS Web Services

5. After you build the samples, use the runner file in the AIS samples directory to run the samples.
It contains all the necessary CLASSPATH initializations for the samples.

Note Agile PLM requires username and password to build the Java samples. The makefile
execution will fail if the three parameters are not set.

To build AIS Java samples on Solaris:
1. Navigate to the AIS samples directory and locate the file build.xml.
2. Type the following command:

$ANT HOME/bin/ant -Dais.url=http://<hostname:port/virtualPath/ws
target>

3. After you build a sample, use the runner file in the AIS samples directory to run the samples.
This file contains all the necessary CLASSPATH initializations for the samples. For more
information, see the comments (in Javadoc) for each sample.

Note If you are connecting to a secure URL that uses SSL, type the following command
instead: $ANT HOME/bin/ant -
Dais.url=http://<hostname:port/virtualPath>/ws -
Dusername=<username> -Dpassword=<password target>. For descriptions of
hostname, port, virtualPath, username, password, and target, see the previous section.

To build the Java AIS samples on a server with Secure Sockets Layer (SSL) enabled:

1. Get the self-signed certificate from the server.

2. Install the self-signed certificate into your Java development environment.

3. Build the sample programs as described above by connecting to the server using HTTPS.\

4. Run the sample programs as usual but include the command line parameter -P. For example:

runner importer.ImportData -P HTTPS <insert other parameters here>

Note The Readme.txt file that is installed with the AIS samples includes more information
about obtaining a certificate, installing it in your Java environment, and building and
running the AIS samples on an SSL-enabled system.

5. After you build the samples, use the runner file in the AIS samples directory to run the samples.
This file contains all the necessary CLASSPATH initializations for the samples.

Running the Java Samples

Depending on your operating environment (Windows or Solaris), once you perform the build, one of
the following files will appear in the AIS samples directory:

8 On Windows, the file is runner.bat
o On Solaris, the file is runner.sh

These files contain the necessary CLASSPATH initializations and you can use them to simplify the
process of invoking a sample application.

v9.3..0.1 19

AIS Developer Guide

The invocations below will print out usage statements for each of the examples. You can use these
usage statements along with the additional documentation provided on the samples o determine
how to run the samples in a meaningful fashion.

To print out usage statements for the clients, type the following commands:

> runner
> runner
> runner
> runner

> runner

export.ExportData
export.ExportPartlist
importer.ImportData
importer.ImportSupplierResponse
importer.ValidateData

export.ExportData Usage

Usage: export.ExportData <options>

Option Description

-a axml This selects the aXML output format instead of the default PDX output format.

-C criteria This is the search criteria for locating objects to export. The criteria must be formatted using the Agile SDK query
language. For more information, refer to Agile PLM SDK Developer Guide.

- virtual-path | This is the Agile PLM virtual path. For example, if you access Agile Web Client via
http://www.sample.com/Agile/PLMServlet, the virtual path is “Agile”. When you install the Agile PLM system, the
default virtual path is “Agile”.

f filter This is the predefined filter name or ID. If you have administrator privileges, you can define Agile PLM filters using
the Agile Java Client.

-F filter-flag This is the ad hoc filter flag. The legal values for this argument derive from the <filters> element shown in the

Export XML Schema documentation. The filter flags correspond to child elements with names ending in “Filter,” like
ChangefFilter and ltemFilter. The basic pattern for this option is filter-name.attribute.value where:

= filter-name corresponds to the name of the XML element, such as ItemFilter (the “Filter” suffix may be omitted).
o attribute corresponds to the name of the attribute being defined (for example, “PageTwo”).

= value corresponds to the value for the attribute. If the attribute is a boolean, the value is optional and defaults
to “true.” For the Attachments attribute, the value “Tables and Files” causes the attachment table and all the
referenced files to be exported. Following is an example of a filter flag:

-F "Item.TitleBlock" "Item.Attachments.TableAndFiles" "Item.BOM.Recurse"

If you are extracting data to:

= PDXfiles, the filter flag should be a superclass filter such as ItemFilter or ChangeFilter. In the following example,
ChangefFilter is used.

runner export.ExportData —h agilesvr -1 7001 -u aisuser -p agile -t ECO -c "[Number] is not null" -r ChangeFilter coverpage" -o
eco.pdx
o aXML files, the filter flag should be a class filter such as PartFilter or ECOFilter. In the following example,
ECOFilter is used.

runner export.ExportData -h agilesvr -1 7001 -u aisuser -p agile -t ECO -c "[Number] is not null" -r "ECOFilter coverrage" -o eco.axml

-a axml

For a complete list of filter types, refer to the Export XML Schema Documentation in Agile PLM's Import/Export
Guide v9.3.

20

Agile Product Lifecycle Management

http://www.sample.com/Agile/PLMServlet

Chapter 2: Using AIS Web Services

Option Description

-h host This is the Agile PLM server machine. The default is localhost.

-l port This is the port on which the Agile PLM server is listening. The default is 80.

-0 output-file This is the output file name. It defaults to: either out . pdx or out . axm1, depending on the output format.

-p password This is the user’s password.

-P protocol This is the URL protocol. Valid values are either HTTP (the default) or HTTPS.

-s site This is the manufacturing site for which data is extracted. If you do not specify a manufacturing site, data is
extracted for all sites.

-t type This is the type of object that is queried. Type either the class name or the predefined object type Default:ltems.
For a list of predefined object types, refer to Export XML schema documentation in Agile PLM's Import/Export
Guide v9.3.
This is the Export XML schema, export . xsd, can be obtained by installing the documentation and samples:
C:\Agile\Agile921Docs\integration\ais\documentation\schemas\export.xs
d
This is the pre-defined types listed in export . xsd. It maps to Agile PLM classes, not subclasses. For example,
the predefined ECO object type actually maps to the Change Orders class, not the ECO subclass. If you specify -t
ECO when you run ExportData, objects of the Change Orders class will be exported, not objects of the ECO
subclass.

Note If you want to use only your Agile PLM system'’s class names and subclass names for object types instead of
the predefined Export object types, you can modify the ExportData.java source code and disable pre-defined
object types by replacing the following lines of code:

try {
// Let's try to use a predefined type.
objType.setPredefined (ObjectTypes.fromString (type));
} catch (Exception ex) {
// Fall back to specifying a type by name (i.e., user-defined
type)
objType.setTypeName (type) ;
}
with this line:
objType.setTypeName (type) ;
-T timeout This is the time in minutes to wait for a response. The defaults to 15 minutes.
-U user This is the Agile PLM username.

Note The export.ExportData client does not have an option to specify an item’s revision.
When you use the client to export items, the latest released revision is exported.
However, you can develop an AIS client that lets you specify a revision to export. For
more information, refer to the Export XML Schema documentation in Agile PLM's
Import/Export Guide v9.3.

v9.3..0.1

21

AIS Developer Guide

These examples show how to run the export.ExportData client.

B runner export.ExportData -h agilesvr -u aisuser -p e-agile -1 7001 -c

"[Title Block.Number] equal to 'P0001l4'" -t Part -F "Item.TitleBlock"
"Item.PageTwo" "Item.Attachments.TableAndFiles" "Item.BOM.Recurse" -o
P00014.pdx

o runner export.ExportData -h agilesvr -u aisuser -p agile -1 7001 -c
"[Title Block.Number] equal to '1000-02'" -f "Default Item Filter" -t
Item -s "San Jose" -o D:\datalout.pdx

B runner export.ExportData -h agilesvr -u aisuser -p e-agile -1 7001 -c
"[Title Block.Number] equal to '1000-02'" -f "Default Item Filter" -t
Item -a axml

B runner export.ExportData -h agilesvr -u aisuser -p e-agile -1 7001 -c
"[General Info.Name] equal to 'ACT'" -f "Default Manufacturer Filter"
-t Manufacturer

Note Substitute appropriate port numbers. For example, for BEA Weblogic, use port 7001 and
for Oracle, use port 7777. For readability, these examples use attribute name, such as
[Title Block.Number], instead of IDs. Agile strongly recommends using attribute IDs. If
you use attribute names, make sure they are fully qualified to avoid ambiguity.

export.ExportPartlist Usage

Usage: export.ExportPartlist <options>

Option Description

-C criteria This is the search criteria to locate objects you want to export. The ExportPartlist command exports data
only for items with AMLs (approved manufacturer parts and their associated manufacturers). The criteria you
specify must be formatted using the Agile SDK query language. For more information, refer to Agile SDK Developer
Guide.

- virtual-path | This is the Agile PLM virtual path. For example, if you access Agile Web Client via
http://www.sample.com/Agile/PLMServlet, the virtual path is “Agile”. When you install the Agile PLM system, the
default virtual path is “Agile”.

- filter This is the predefined filter name or ID. If you have administrator privileges, you can define Agile PLM filters using
the Agile Java Client.

-F filter-flag This is the ad hoc filter flag. The valid values for this argument derive from the <filters> element shown in the Export

XML Schema documentation in Agile PLM's Import/Export Guide. The filter flags correspond to child elements with
names ending in “Filter,” such as ChangeFilter and ItemFilter. The basic pattern for this option is filter-
name.attribute.value. filter-name corresponds to the name of the XML element, such as ItemFilter (the “Filter” suffix
may be omitted). attribute corresponds to name of the attribute being defined (for example, “PageTwo”). value
corresponds to the value for the attribute. If the attribute is a boolean, the value is optional and defaults to “true.”
For the Attachments attribute, the value “Tables and Files” causes the attachment table and all the referenced files
to be exported.

The filter flag should be a class filter such as PartFilter (or Part). For a complete list of filter types, see the Export
XML Schema Documentation in AIS Folders on page 9.

This is an example of a filter flag:
-F "Part.TitleBlock" "Part.Attachments.TableAndFiles"

22

Agile Product Lifecycle Management

http://www.sample.com/Agile/PLMServlet

Chapter 2: Using AIS Web Services

Option Description

"Part.BOM.Recurse"

-h host This is the Agile PLM server machine. The default is localhost.

-l port This is the port on which the Agile PLM server is listening. The default is 80.

-0 output-file This is the output file name. The default is out.axml.

-p password This is the user’s password.

-P protocol This is the URL protocol. Valid values are either HTTP (the default) or HTTPS.

-I revision This is the item revision to export.

-s site This is the manufacturing site for which data is extracted. If you do not specify a manufacturing site, data is
extracted for all sites.

-T timeout This is the time to wait for a response (in minutes). It defaults to15 minutes.

-u user This is the Agile PLM username.

These examples show how to run the export.ExportPartlist client.

o runner export.ExportPartlist -h agilesvr -u aisuser -p agile -1 7778 -
c "[Title Block.Number] equal to 'P00408'"™ -f "Default Item Filter" -o
D:\out.axml

B runner export.ExportPartlist -h agilesvr -u aisuser -p agile -1 7001 -
c "[Title Block.Number] equal to 'P00502'"™ -r "A"™ -f "Default Item
Filter" -o D:\datal\out.axml

o runner export.ExportPartlist -h agilesvr -u aisuser -p agile -1 7778 -
c "[Title Block.Number] equal to 'P00025'"™ -f "Default Item Filter" -o
D:\data\partlist rev.axml -r "A"

o runner export.ExportPartlist -h agilesvr -u aisuser -p agile -1 7778 -
c "[Title Block.Number] equal to 'P00163'" -f "Default Item Filter"
"Default Manufacturer Filter" "Default Manufacturer Part Filter" -o
D:\data\partlist bom.axml -r "B"

v9.3..0.1 23

AIS Developer Guide

importer.ImportData Usage

Usage: importer.ImportData <options>

Option Description

-a mapfile Thisis a previously saved mapping definition file.

-e virtual-path This is the Agile PLM virtual path. For example, if you access Agile Web Client via
http://www.sample.com/Agile/PLMServlet, the virtual path is “Agile”. When you install the Agile PLM
system, the default virtual path is “Agile”.

- filetype This is the type of file that is imported. If this option is omitted, the client determines the filetype based
on the MIME type of the import source file.

-h host This is the Agile PLM server machine. The default is localhost.

-i input-file This is the source data file.

-l port This is the port on which the Agile PLM server is listening. The default is 80.

-m map A textual mapping definition. Arguments should take the form of <source-path>=<target-path>.

-n option This is the an import server option. Arguments take the form of <group>|<option>=<value>. Please
see the Import XML Schema documentation for more information on available options.

-0 output-file This is the output file name. The default is log.xml.

-p password This is the user’s password.

-P protocol This is the URL protocol. Valid values are either HTTP (the default) or HTTPS.

-t type This is the type of import operation(s) to run. At least one type must be specified. The format of a type
argument is type[.<child-type>] (for example., items.bom, manufacturerParts.attachments, and
prices.priceLines). Please see the Import XML Schema documentation for a complete set of available
import types.

-T timeout This is the time to wait for a response (in minutes). It defaults to 15 minutes.

-u user This is the Agile PLM username.

-x transform This is the a previously saved transformation definition file. For information on how to use the Import
wizard to create a transformation definition file, refer to Agile PLM Import and Export Guide.

These examples show how to run the importer. ImportData client.

u]

runner importer.ImportData -h agilesvr -u aisuser -p agile -1 7778 -i
D:\data\bom2.txt -f DelimitedTextFile -t items -n
"BusinessRuleOptions|ChangeMode=Authoring"
"TextParser|FieldDelimiter=," -o D:\datal\result.xml -m
Parent="Part.Title Block.Number" Child="Part.Title Block.Description”

runner importer.ImportData -h agilesvr -u aisuser -p agile -1 7778 -1
D:\data\bom2.txt -f DelimitedTextFile -t items -n
"BusinessRuleOptions|ChangeMode=Authoring"
"TextParser|FieldDelimiter=," -o D:\datal\result.xml -m
Parent="Part.Title Block.Number" Child="Part.Title Block.Description"
Type="Part.Title Block.Part Type"

24

Agile Product Lifecycle Management

http://www.sample.com/Agile/PLMServlet

Chapter 2: Using AIS Web Services

B runner importer.ImportData -h agilesvr -u aisuser -p agile -1 7778 -1
D:\data\Bookl.xls -f ExcelFile -t items -m num="Part.Title
Block.Number" desc="Part.Title Block.Description" type="Part.Title
Block.Part Type" -o D:\datalresult.xml -n
"ExcelFileParser|SelectWorksheet=1"

B runner importer.ImportData -h agilesvr -u aisuser -p agile -1 7778 -1
D:\SourceFiles\Source\Item\item tab.txt -a
D:\SourceFiles\Mapping\Item\item tab.xml -t items -f DelimitedTextFile
-o D:\SourceFiles\Baseline\Item\item tab import.xml -n
"BusinessRuleOptions|ChangeMode=Authoring"
"TextParser|FieldDelimiter=tab"

o runner importer.ImportData -h agilesvr -u aisuser -p agile -1 7778 -i
D:\SourceFiles\Source\price lines import.xls -a
D:\SourceFiles\Mapping\price lines import.xml -f ExcelFile -t
prices.pricelines -o D:\SourceFiles\Baseline\price lines import.xml -n
"BusinessRuleOptions|ChangeMode=Redline"
"BusinessRuleOptions|ChangeNumber=PCO00005"

o runner importer.ImportData -h agilesvr -u aisuser -p agile -1 7778 -1i
D:\SourceFiles\Source\AML PC.txt -a D:\SourceFiles\Mapping\AML PC.xml
-t items.aml items.bom -f DelimitedTextFile -o N
D:\SourceFiles\Baseline\AML PC.xml -n
"BusinessRuleOptions|ChangeMode=Redline"
"BusinessRuleOptions|ChangeNumber=C00041"
"Template|TemplateType=com.agile.imp.template.TemplateParentChildFilte
r"

o runner importer.ImportData -h agilesvr -u aisuser -p agile -1 7778 -i
D:\SourceFiles\Source\bom RefDelimiter.txt -a
D:\SourceFiles\Mapping\bom RefDelimiter.xml -t items.bom -f
DelimitedTextFile -o D:\SourceFiles\Baseline\new bom.xml -n
"BusinessRuleOptions|ChangeMode=Authoring"
"BusinessRuleOptions|ReferenceDesignatorRangeCharacter=-"
"BusinessRuleOptions|ReferenceDesignatorDelimiterCharacter=,"

o runner importer.ImportData -h agilesvr -u aisuser -p agile -1 7778 -1i
D:\SourceFiles\Source\bom Level.txt -a
D:\SourceFiles\Mapping\bom Level.xml -t items.bom items.aml -f
DelimitedTextFile -o D:\SourceFiles\Baseline\bom Level.xml -n
"BusinessRuleOptions|ChangeMode=Redline"
"Template|TemplateType=com.agile.imp.template.TemplatelevelFilter"
"BusinessRuleOptions|ChangeNumber=C00013"

o runner importer.ImportData -h agilesvr -u aisuser -p agile -1 7778 -1
D:\SourceFiles\Source\Item\item comma category.txt -a
D:\SourceFiles\Mapping\Item\all mapping comma.xml -o
D:\SourceFiles\Baseline\all mapping comma.xml -t items -f
DelimitedTextFile -n "BusinessRuleOptions|ChangeMode=Authoring"
"TextParser|FieldDelimiter=," "TextParser|LocationOfHeaderRow=3"
"TextParser|FileEncoding=IS08859 1"
"ParsingAndValidationOptions|MultilistDelimiterCharacter=;"
"ParsingAndValidationOptions|WhitespaceValidationAction=Reject"
"ParsingAndValidationOptions|CaseValidationAction=Convert"
"ParsingAndValidationOptions|LengthValidationAction=Reject"
"TextParser|TextQualifier=""

v9.3..0.1 25

AIS Developer Guide

importer.ImportSupplierResponse Usage

Usage: importer.ImportSupplierResponse <options>

Option Description

-e virtual-path This is the Agile virtual path. For example, if you access Agile Web Client via
http://www.sample.com/Agile/PLMServlet, the virtual path is “Agile”. When you install the Agile PLM system,
the default virtual path is “Agile”.

-h host This is the Agile server machine. The default is localhost.

-i input-file This is the source data file.

-l port This is the port on which the Agile server is listening. The default is 80.

-0 output-file This is the output file name. The default is log.xml.

-p password This is the user’s password.

-P protocol This is the URL protocol. Valid values are either HTTP (the default) or HTTPS.

-r RFQ-number

This is the RFQ into which you are importing the supplier’s response.

-s supplier-number

This is the supplier number. It is needed only when a buyer imports an RFQ response for an off-line supplier.
If the supplier number is not specified, the import server retrieves the supplier number from the specified
input file.

-T timeout

This is the time to wait for a response (in minutes). It defaults to 15 minutes.

-u user

This is the Agile username.

Here are some examples showing how to run the importer.ImportSupplierResponse client.

B runner importer.ImportSupplierResponse -h agilesvr -u joesupplier -p
agile -1 7778

a -1 D:\SourceFiles\Source\RFQ00256.csv —-r RFQ00256

B runner importer.ImportSupplierResponse -h agilesvr -u Jjoebuyer -p
agile -1 7778

o -1 D:\SourceFiles\Source\RFQ00013.csv -o
D:\SourceFiles\Source\Response.xml

o -r RFQ00013 -s SUP11003

importer.ValidateData Usage

Usage: importer.ValidateData <options>

The options are exactly the same as the importer.ImportData Web service. See
“importer.ImportData Usage” command.

26

Agile Product Lifecycle Management

http://www.sample.com/Agile/PLMServlet

Chapter 2: Using AIS Web Services

Creating a Web Service Client

Using the ExportData sample, this section provides the procedures to create a Web service client
application for AIS.

Generating the SOAP Request

You can generate an appropriate SOAP request using client-side stubs. You can also generate
client-side stubs Web-Service-aware code libraries are able to generate client-side stubs on your
behalf. This entails using a code generation utility along with the WSDL for the desired Web service.

The AIS provided samples make use of Axis in order to connect with the AIS Web service engine.
Axis provides a WSDL2Java utility that you can use for this purpose; other Web-Service-aware
libraries will have their own client-side stub generation facility (for example, .Net includes a wsdl.exe
utility). In the case of the samples, the client-side stub generation occurs during the samples’ build
process. Within the build.xml file is the following Ant target:

<target name="generate-export-stubs" depends="init"
unless="exp-stubs.present">
<echo>Generating export Java client-side stubs from
WSDL. . .</echo>
<java fork="true"
classname="org.apache.axis.wsdl.WSDL2Java"
failonerror="true">
<classpath refid="build.classpath"/>
<arg line="-o ${built.scratch.dir}/gen"/>
<arg line="-p export"/>
<arg line="${ais.url}/Export?wsdl"/>
</java>
</target>

Note Axis also includes an Ant task definition, which you can use instead of the above <java>
task. For more information about Axis Ant tasks, see the following Website:
http://ws.apache.org/axis/java/ant/ant.html

The above Ant target is responsible for generating the export-related client-side stubs. This
invocation retrieves the Export WSDL from ${ais.url}/Export?wsdl, generates Java code in
the export Java package, and places the source code within the ${built.scratch.dir}/gen
directory. For more information on the WSDL2Java utility, refer to Axis documentation on the Axis
Website at http://ws.apache.org/axis/.

Once the client-side stubs have been generated, the user can use the generated object definitions
in order to more easily generate the appropriate SOAP request. These stubs enable the user to
focus on the capabilities of the target Web service operation without the nedd to construct a valid
SOAP request. In the ExportData.java sample, you can see that the run method contains all the
code used to generate the SOAP request. However, instead of explicitly constructing a SOAP
request, the code is concerned with setting up a Java data structure, which will be provided as the
parameter to a stub method invocation. The code is more concerned with functionality than
iformatting, which makes it easier to read, write, and maintain.

v9.3..0.1 27

http://ws.apache.org/axis/java/ant/ant.html
http://ws.apache.org/axis/

AIS Developer Guide

Agile and Non-Agile Web Service Clients

The sample.zip folder contains the source code of an Import/Export Web service client. If you use
this client, there is no need to modify the code for the client to connect to Axis v1.4. However if you
plan to use an in-house, or a third party client, you must use the following procedure to modify the
code and work with Axis v1.4.

Submitting the SOAP Request

The next step in consuming a Web service operation is to properly submit the generated SOAP
request to the Web service engine. When dealing with generated client-side stubs, this step usually
becomes as simple as pointing the stubs to the desired server and invoking a method on the stubs.
You do not need to worry about opening a connection or manually marshaling your data onto the
wire; instead, the generated stubs handle these details.

The ExportbData.java sample illustrates the above statement in two places:

o The getExportStub method is responsible for pointing the client-side stubs to the desired
Web service engine.

o The stub.exportData method invocation found within the run method is responsible for
actually submitting the request to the Web service engine. The actual submitting of the request
and all the minutiae that entails are managed by the stubs themselves; you do not need to
worry about the connecting, submitting, or marshaling particulars.

The details on how you point the stubs to the desired Web service engine and submit the request
will vary from code library to code library. Please consult the documentation for your Web-Service-
aware code library for more information.

Processing the SOAP Response

Similar to submitting a SOAP request, processing a SOAP response is handled with the generated
client-side stubs. Without these generated stubs, you must parse the XML-based SOAP response
and resolve the many formatting and unmarshaling issues that arise. However, when working with
generated stubs, all these details are taken care of so that you will receive the Java objects in a
proper form.

The ExportData.java sample illustrates this point clearly. In this sample, you can see that the
result of the stub.exportData method is a javax.activation.DataHandler, whichis a
convenient way of encapsulating a binary data stream. Rather than requiring you to parse an XML
document and interpreting the returned data, the stubs automatically do this and return the
response's attachment as a DataHandler object.

The details on how SOAP responses are processed vary from code library to code library. For more
information, consult the documentation for your Web-Service-aware code library.

28 Agile Product Lifecycle Management

Chapter 3
Extracting Agile Objects and Attachments

This chapter includes the following:

= Understanding Web Service OPErationscccccccriiriiriieiiicsss sttt 29
= Using the exportData Web Service OPeration.........ccucvvrrienniensieesses e sssesenns 29
= Using the exportPartlist Web Service Operation ... sssesenns 33

Understanding Web Service Operations

The following two export Web service operations are delivered as part of AlS:

o exportData - A Web service operation that extracts data from an Agile PLM system in one of
several data formats.

o exportPartList - A Web service operation that takes a multilevel BOM and flattens it into a list of
the manufacturer parts and their quantities in the BOM and their quantities and returns the data
in aXML format.

Using the exportData Web Service Operation

The exportData Web service operation is capable of extracting Agile data in one of several
structured formats. This operation can be used to provide integration functionality between your
Agile PLM system and other, third-party systems.

This section illustrates how to format an XML request in order to use the exportData Web service
operation. For more information on the XML schema that describes an exportData request, see the
Export XML Schema documentation in AlS Folders. To view the information, select documentation >
schemas > export.htm

The exportDataRequest XML element describes the XML format you should use when submitting
an exportData request to AIS; it allows you to specify the following types of data:

o Queries - One or more queries that define what objects should be exported
= Filters - One or more filters that define what data from the selected objects should be exported.
o Formats — The format that is used for the exported data.

o Sites - Manufacturing sites for which data should be exported. By default, data for all sites is
exported.

v9.3..0.1 29

AIS Developer Guide

Working with Queries

Using the exportData Web service operation, you can specify parameters related to the object
query:

= The query itself (Required)

= The type of object being queried (Required)

= The site to apply to all objects matched by the query (Optional)

@ The revision to apply to all objects matched by the query (Optional)

You can specify multiple queries at once, returning multiple result sets. More information on query
parameters can be found in the Agile API reference documentation. However, the following section
provides a brief introduction to the criteria syntax.

Specifying Query Criteria

This section introduces the basics of Agile SDK query syntax. For complete information on how to
construct complex search criteria, refer to Agile SDK Developer Guide.

The value for the criteria parameter for the exportData and exportPartlist is a single string consisting
of one or more search conditions. Strings that appear within the search criteria should be enclosed
in single quotes ().

Working with Sites

Companies that practice distributed manufacturing use several different sites to manufacture their
products. The exportData Web service operation supports exporting data to all manufacturing sites,
or to a specific site. Manufacturing sites affect how items and changes are exported. For items,
BOMs, and AMLs can vary per site. For changes, the Affected ltems table specifies which
manufacturing sites are affected.

By default, the exportData Web service operation extracts information for all sites. If you specify a
manufacturing site, only the data associated with that site is exported. All objects not associated
with that manufacturing site are filtered out of the query results.

The following XML snippets illustrate different ways to specify a manufacturing site:
<site>
<site-name>Taipei</site-name>
</site>
<site>
<site-id>6</site-id>
</site>

<!--The following is optional since the default is all sites -->
<site>

<all/>
</site>

30 Agile Product Lifecycle Management

Chapter 3: Extracting Agile Objects and Attachments

Working with Filters

The exportData Web service operation enables you to define the information that you want to query
from the selected objects. These parameters are captured by specifying one or more filters. Filters
are either predefined in the Agile PLM system, or they are defined in an ad hoc fashion by the AIS
client.

You can specify multiple filters and their effect is cumulative. The resulting filter is the combination
of all specified filters. For example, if one filter includes an item’s PageTwo information and a
separate filter includes the item'’s History information, the effective filter includes both PageTwo and
History information.

Predefined Filters

Agile provides several predefined filters to refine query results. You can specify a predefined filter in
one of the following three different ways: —

o By ID - Specify the numeric ID of a defined filter with the Agile administrative data. This
information can be found using the Agile API to inspect the Agile administrative data. Use the
ID of a defined filter to reduce the risk of a name change that can adversely affect your code.

o By name - Specify the name of a defined filter found in the Agile administrative data. This is an
easy way to reference previously defined filter definitions.

o By object type -Specify different information sets for each type, from the set of available filters,
one for each object type.

Note If you have administrator privileges to the Agile PLM system, you can define new filters.
Log into Agile Java Client and choose Admin > System Settings > Agile Contents Service >
Filters.

For more information on predefined filters, see the Export XML Schema documentation in AIS
Folders. To view the information, select documentation > schemas > export.htm.

Ad Hoc Filters

Ad hoc filters are defined for a particular purpose and are not stored in the Agile PLM system. The
Export XML Schema defines several <filters> elements, such as ltemFilter, ChangeFilter,
ManufacturerFilter, and ManufacturerPartFilter. The general usage for ad hoc filters is to specify the
filter type, such as ItemFilter, and then supply boolean values for each table that you want
included by the filter. For example, the following ad hoc filter includes the TitleBlock and PageTwo
tables for items:

<filters>

<ItemFilter TitleBlock="true" PageTwo="true"/>
</filters>

Most tables require simple boolean values. However, other tables support enumerated values that
enable you to include the associated objects. For example, the BOM table supports the following
enumerated values for filters: DoNotInclude (the default), TableOnly, SingleLevel, and Recurse.

v9.3..0.1 31

AIS Developer Guide

Note The filter type that you specify depends on the output format. If you extract data to a
PDX file, the filter type should be a superclass filter such as ItemFilter or ChangeFilter. If
you extract data to an aXML file, the filter type should be a class filter such as PartFilter
or ECOfFilter.

An exportData Filter Example

The following code segment illustrates how to combine a predefined filter, “Default Part Filter,” with
an ad hoc filter that extracts all Item data, including attachments that may result from the query
defined in the query example above.

<filters>
<!--The following is a predefined filter specified by name-->
<filter-name>Default Part Filter</filter-name>
<!--The following is an ad hoc filter -->

<ItemFilter TitleBlock="true" PageTwo="true"
PageThree="true" History="true"
Attachments="TablesAndFiles"
BOM="Recurse" Changes="true"
WhereUsed="true"
AML="TableOnly" Site="true"/>

</filters>

Working with Formats

The exportData Web service operation can export data in either PDX or aXML format. For a
description of these formats, see Web Services Operations.

For more information on how to specify the supported formats, see the Export XML Schema
documentation in AIS Samples folder. To view the information, select documentation > schemas >
export.htm.

An exportData Format Example

The following illustrates how to extract data in PDX format:

<format>PDX</format>

A Sample exportData Web Service Operation

The following is a sample exportDataRequest, which demonstrates a
complete exportData Web service operation request:

<exportDataRequest>
<gueries>
<query>
<criteria>[Title Block.Number] == '1000-02'</criteria>
<objectType>
<predefined>Item</predefined>

32 Agile Product Lifecycle Management

Chapter 3: Extracting Agile Objects and Attachments

</objectType>
</query>
</queries>
<site>
<site-name>Taipei</site-name>
</site>
<filters>
<!--The following is a predefined filter specified by name-->
<filter-name>Default Part Filter</filter-name>
<!--The following is an ad hoc filter -->
<ItemFilter TitleBlock="true" PageTwo="true"
PageThree="true" History="true"
Attachments="TablesAndFiles"
BOM="Recurse" Changes="true"
WhereUsed="true"
AML="TableOnly" Site="true"/>
</filters>
<format>PDX</format>
</exportDataRequest>

The above XML sample is not a complete or valid SOAP request. Rather, this XML document
represents the contents of a SOAP request body. Generally, you do not need to manually generate
the above XML document. Instead, the client-side stubs generated by a Web-Service-aware code
library take care of creating an appropriately formatted XML document and placing it within a SOAP
request and the above sample is an illustration of what the XML request generated by client-side
stubs.

Using the exportPartlist Web Service Operation

The exportPartlist Web service operation takes a multilevel BOM and “flattens” it into a list of
the manufacturer parts in the BOM and their quantities and returns the data in aXML format. That is,
it enables you to extract a rolled up set of parts, and the related Quantities Per Top Level Assembly
(QPTLA). The value of the QPTLA is computed as the sum over recursive products starting from
the top of the BOM tree. This Web service calculates the QPTLA for each unique item-revision pair,
and returns the results in the Part Quantities element of the resulting aXML output.

Note The exportPartlist Web service exports data only for items with AMLs (approved
manufacturer parts and their associated manufacturers). ltems without AMLs are
ignored.

Working with exportPartlist Queries

The exportPartlist Web service is similar to exportData in the way it accepts query
definitions. The main difference is that you do not need to specify the object type against which the
query is operating. This is because the queries related to a part list must always be queries against
items.

v9.3..0.1 33

AIS Developer Guide

Working with exportPartlist Filters

Filters are specified for the exportPartlist Web service operation is similar to the exportbData
Web service operation. The only difference is which filters can be specified. Because
exportPartlist only operates over items, manufacturer parts (that is, AML) and manufacturers
(AML's related manufacturers), the object-related filters are restricted to those three data types.

An exportPartlist Example

The following is an example of the exportPartlistRequest element. It is a simple adaptation of
the previous exportData sample and demonstrates a complete exportPartlist Web service
operation request.
<exportPartlistRequest>
<queries>
<query>
<criteria>[Title Block.Number] == '1000-02'</criteria>
</query>
</queries>
<site>
<site-name>Taipei</site-name>
</site>
<filters>
<!--The following is a predefined filter specified by name-->
<filter-name>Default Part Filter</filter-name>
<!--The following is an ad hoc filter -->
<ItemFilter TitleBlock="true" PageTwo="true"
PageThree="true" History="true"
Attachments="TablesAndFiles"
BOM="Recurse" Changes="true"
WhereUsed="true"
AML="TableOnly" Site="true"/>
</filters>
</exportDataRequest.

The following were removed from the previous exportData sample to make this adaptation:

= The query element does not include an objectType element. This is because the
exportPartlist Web service operation only queries against item objects.

o The format element is not included in the exportPartlistRequest. This is because the
exportPartlist Web service operation only exports data in aXML format.

The preceding XML example is not a complete or valid SOAP request. Rather, this XML document
represents the contents of a SOAP request body. Generally, you do not need to generate the above
XML document manually. Instead, the client-side stubs generated by a Web-Service-aware code
library create an appropriately formatted XML document and place it within a SOAP request. The
above sample is an illustration of what the XML request generated by client-side stubs would
resemble.

34 Agile Product Lifecycle Management

Chapter 4
Importing Data

This chapter includes the following:

= Understanding the Web Service Import Feature
= Using the importData Web Service OPEration............ccoeiiriiiriniinieieseese e
5 IMPOTHING DALA VAIUES ...

You can use the importData Web service operation of AlS to import data into the Agile PLM
databases. The source for the import data can be an Agile database, a third party Product Data
Management (PDM) system, or an Enterprise Resource Planning (ERP) system. The Agile server
stores information about customer-specific items, such as parts that the company uses to build its
products. It also maintains the relationships that assembly parts have with BOM components and
that parent items have with approved manufacturers.

For more information on importing data into the Agile PLM system, refer to the Agile PLM Import
and Export Guide.

Understanding the Web Service Import Feature

The following Web service import operations are delivered as part of the AIS:
o importData — A Web service operation that imports data into the Agile PLM system.

o importSupplierResponse — A Web service operation that imports an RFQ response from a
supplier.

Note The ImportSupplierResponse Web service operation is deprecated as of Agile 9.0
SP1. Instead, invoke the importData Web service operation and construct a valid
importSupplierResponseRequestType XML data structure. For more information,
see Importing Supplier Responses on page 41. Although the old
ImportSupplierResponse Web service operation is supported for this release,
Oracle recommends migrating your code to the new API.

o validateData — A Web service operation that validates source data with compliance rules

Using the importData Web Service Operation

The importData Web service operation exposes all Import Server functionality through a Web
service interface that you can access programmatically. This section documents formatting an XML
request in order to use the importData Web service operation. For more information on the XML
schema that describes an importData request, refer to the Import XML Schema documentation in
AIS Folders on page 9. To view the information, select documentation > schemas > import.htm.

v9.3..0.1 35

AIS Developer Guide

The importDataRequest XML element describes the XML format you must use when submitting
an importData requestto AlS. It supports the following XML datastructure types:

<importDataRequest xsi:type="importDataRequestType">

</importDataRequest>
<importDataRequest xsi:type="importSupplierResponseRequestType">

</iﬁ§ortDataRequest>
Specifying Data Types

The importDataRequest XML element allows you to specify several different types of data,
including:

o Data Source - The source of the data to be imported
o Operations - Which import operations should be performed.
@ Mapping - How incoming data should be mapped into the Agile PLM system.

= Transformation - How incoming data should be transformed before importing into the Agile PLM
system.

o Options - Other options that affect the behavior of the import server.

Working with Data Sources

A data source is defined by two pieces of information: the URL that references the data to be
imported and a data type that defines what kind of data is being imported. The URL specified can
be a reference to either an attachment sent along with the SOAP request, or an external resource. If
the URL references an attachment, then the SOAP request can follow either the SwA (SOAP With
Attachments) or DIME (Direct Internet Message Encapsulation) encoding rules. For more
information on these parameters, refer to the Import XML Schema documentation in AIS Folders on
page 9. To view the information, select documentation > schemas > import.htm.

The following XML snippet illustrates how to specify a PDX data source that is sent along with the
SOAP request:

<importDataRequest xsi:type="importDataRequestType">
<dataSource>
<attachmentRef href="cid:E36C913548344FEDAIB7FC20CEDCEDER3" />
typeIPC2571</type>
</dataSource>

In the above snippet, the value of the HREF attribute is not intuitive, but it is of the form expected
when referencing an attachment sent as part of the SOAP request.

36 Agile Product Lifecycle Management

cid:E36C913548344EDA1B7FC20CEDCEDEB3

Chapter 4: Importing Data

Working with Operations

By specifying one or more import operations, you can define what data is imported into the Agile
PLM system. The following table lists valid import operations.

Operation Child Attributes
currencyConversion n/a
customers n/a
declarations items, manufacturerParts, partFamilies, itemSubstances, mfrpartSubstances,
partFamilySubstances, specifications,attachments
items aml, bom, sites, attachments, composition, substances, suppliers, specifications, relationships
manufacturerParts attachments, composition, substances, suppliers, specifications, relationships
manufacturers attachments, relationships
partgroups parts, suppliers, specifications, relationships, attachments
prices priceLines, attachments
productServiceRequests affectedltems, relatedPSR, relationships, attachments
projectltems aml, bom, attachments

qualityChangeRequests

affectedltems, relationships, attachments

quoteHistories

quoteHistoryLines

specifications substances, attachments

substances materialCompositions, attachments

suppliers supplier, manufacturerOfferings, commodityOfferings
users usergroup

usergroups user

Depending on what you specify, the import server performs the desired import operations and
ignores data that is not relevant to the selected import operation. For more information on import
operations, see the Import XML Schema documentation in ALS Folders on page 9. To view the
information, select documentation > schemas > import.htm.

The following code snippet illustrates how to import manufacturers, manufacturer parts, and items.
For items, the BOM and AML tables are also imported.

<operations>

<manufacturers attachments="false"/>
<manufacturerParts attachments="false"/>
<items aml="true" bom="true" sites="false" attachments="false"/>

</operations>

v9.3..0.1

37

AIS Developer Guide

Working with Mappings

The specified mappings determine how the incoming data is mapped into the Agile PLM system.
You can specify mappings either by referencing a previously defined mapping definition file, or by
specifying the mappings via the submitted XML data structure. Referencing a previously defined
mapping definition file occurs in much the same way as a data source is referenced (that is, via an
HREF attribute on the appropriate element). Specifying a mapping via the XML data structure
requires specifying the source and target attributes in the appropriate format.

For more information on these parameters, see the Import XML Schema documentation in AIS
Folders on page 9. To view the information, select documentation > schemas > import.htm.

The following snippet illustrates how to map a field from the incoming PDX package onto the Title
Block of an item.

<mapping>
<entry>

<source>/ProductDataeXchangePackage/Items/Item@itemIdentifier</sourc
e>
<target>Part.Title Block.Number</target>
</entry>
</mapping>

The following snippet illustrates how you can reference a previously defined mapping definition file.
%ﬁépping>

<attachmentRef href="cid:E36C913548344EDA1IBR7FC20CEDCEBEEE" />
</mapping>

In the above snippet, the HREF attribute is not very intuitive, but it is of the form expected when
referencing an attachment sent as part of the SOAP request.

Note Agile PLM allows you to define an unlimited number of new flex fields for each type of
business object. Both the Agile Import wizard and AlS now support user-defined flex
fields. Therefore, you can import data to user-defined flex fields.

Working with Transforms

Transforms are used to specify the way data is transformed as it is imported into the Agile PLM
system. To specify Transforms, use the previously defined transformation definition files as shown
in the following snippet.

<transform href="cid:E36C913548344FEDA1IBR7FC20CEDCE0123"/>

In the above snippet, the HREF attribute is not very intuitive, but it is of the form expected when
referencing an attachment sent as part of the SOAP request. For more information on this
parameter, see the Import XML Schema documentation in AIS Folders on page 9. To view the
information, select documentation > schemas > import.htm.

38 Agile Product Lifecycle Management

cid:E36C913548344EDA1B7FC20CEDCEBEEF
cid:E36C913548344EDA1B7FC20CEDCE0123

Chapter 4: Importing Data

Working with Options

The import server provides several options that you can set in order to alter the behavior of the
import server. These options are grouped together into related option groups, which makes it easier
to distinguish the purpose of the related options. For more information on these parameters, see the
Import XML Schema documentation in AIS Folders on page 9. To view the information, select
documentation > schemas > import.htm.

The following snippet illustrates how to set several Business Rule and Parsing and Validation
options:

<options>
<BusinessRuleOptions>
<ChangeMode value="Authoring"/>
<MultiRowUpdateMode value="AddUpdateOnly"/>
</BusinessRuleOptions>
<ParsingAndvValidationOptions>
<CaseValidationAction value="Convert"/>
</ParsingAndvalidationOptions>
</options>

ChangeType and ChangeAutoNumber Options

The import server supports setting the following ChangeType and ChangeAutoNumber options
when importing items in the Redline mode. This in addition to setting the same for a
ChangeNumber. You have the option to specify a non-existing change in AlS, and the Import server
generates the change for the affected ChangeType, ChangeNumber or ChangeAutoNumber. When
a change order is initiated, the server records a message that includes the type and number of the
change in the AIS log file. For more information on these parameters, see the Import XML Schema
documentation in AIS Folders on page 9. To view the information, select documentation > schemas >
import.htm.

o ChangeType option supports specifying the subclass name or ID of the change order for the
ECO,SCO, or MCO. If the change type is invalid, the Import server will reject the entire Import
operation and will record a fatal message in the AlS log file.

= ChangeAutoNumber option supports generating change numbers with the specified Autonumber.
If the specified ChangeAutoNumber is invalid, the Import server will reject the entire import
operation and will record a fatal message in the AlS log file.

Note Do not set the ChangeNumber option if you have already invoked the
ChangeAutoNumber option.

The following snippet illustrates how to set the ChangeMode, ChangeType, and
ChangeAutoNumber options in the aXML file.

<options>
<BusinessRuleOptions>
<ChangeMode value="Redline"/>
<ChangeType value="ECO"/>
<ChangeAutoNumber value="ECO AutoNumber"/>
<MultiRowUpdateMode value="AddUpdateOnly"/>
</BusinessRuleOptions>

v9.3..0.1 39

AIS Developer Guide

<ParsingAndvValidationOptions>
<CaseValidationAction value="Convert"/>
</ParsingAndvValidationOptions>
</options>

Options to Import Non-Existing Objects

You have the option to accept or reject importing non-existing objects during an import operation.
This behavior is supported by the BehaviorUponNonExistingObjects option. This option has
two values, Accept and Reject. Accept creates the non-existing objects during import and Reject
skips creating these objects.

There is detailed information about BehaviorUponNonExistingObjects in the documentation
folder in the AIS_samples.zip file. To access the AlIS_samples.zip file, see AIS Folders on page 9.
To view the information, select documentation > schemas > import.htm

An ImportData Example

The following is a complete example of invoking importDataRequest. It shows how a fully
configured importData operation request will resemble.
<importDataRequest xsi:type="importDataRequestType">
<dataSource>
<attachmentRef href="cid:E36C913548344FEDAIB7FC20CEDCEDEB3" />
typelIPC2571</type>
</dataSource>
<operations>

<manufacturers attachments="false"/>

<manufacturerParts attachments="false"/>

<items aml="true" bom="true" sites="false" attachments="false"/>
</operations>
<mapping>

<attachmentRef href="cid:E36C913548344FEDAIB7FC20CEDCEBEEE" />
</mapping>
<options>

<BusinessRuleOptions>
<ChangeMode value="Authoring"/>
<MultiRowUpdateMode value="AddUpdateOnly"/>

</BusinessRuleOptions>

<ParsingAndvValidationOptions>
<CaseValidationAction value="Convert"/>

</ParsingAndvValidationOptions>

</options>
</importDataRequest>

The above XML document is not a complete or valid SOAP request. Rather, this XML document
represents the contents of a SOAP request body. Generally, you do not need to generate the above
XML document by hand. Instead, the client-side stubs generated by a Web-Service-aware code
library will usually take care of creating an appropriately formatted XML document and placing it

40 Agile Product Lifecycle Management

cid:E36C913548344EDA1B7FC20CEDCEDEB3
cid:E36C913548344EDA1B7FC20CEDCEBEEF

Chapter 4: Importing Data

within a SOAP request. The above sample is simply an illustration of what the XML request
generated by client-side stubs might look like.

Using the validData Web Service Operation

This operation exposes the validation service through a Web service interface that you can invoke
programmatically. This operation validates the source data for compliance with server rules that
govern length, size, and other formats before importing them into the Agile PLM system. For
information on programmatic support, refer to the Agile PLM SDK Developer Guide. For information
on the Ul implementation, refer to Agile PLM Import and Export Guide.

The validateData operation uses the same importDataRequestType used by the importData Web
service operation. For procedures to specify the importDataRequestType, see Using the
importData Web Service Operation on page 35. For more information on the XML schema that
describes the importData request, refer to the Import XML Schema.

Note The validateDataReqgeustType is a subclass of the importDataRegeustType
but it does not define any additional methods. In that way, the two are exactly the same.
In future releases, the validateData operation will use the validateDataRequestType
instead of the importDataRequestType.

Importing Supplier Responses

To import supplier responses using the importDataRequest Web service operation, specify
"importSupplierResponseRequestType" for the xsi:type element. The
importSupplierResponseRequestType is much simpler than importDataRequestType because it is
much more constrained. You don’t need to specify import operations, mapping files, transformation
files, or options to import an RFQ response. The importSupplierResponseRequestType XML
element allows you to specify three types of data:

o Data Source — The source of the data to be imported.
o RFQ Number — The alphanumeric identifier of the RFQ that is associated with the response.

o Supplier Number — The supplier number is needed only when a buyer imports an RFQ response
for an off-line supplier. If the supplier number is not specified, the import server retrieves the
supplier number from the specified input file.

For more information on importSupplierResponseRequestType parameters, see the Import XML
Schema documentation in AIS Folders on page 9.

The following is a complete sample for importSupplierResponseRequest. It demonstrates how a
fully configured importSupplierResponse operation request can appear.

<importDataRequest xsi:type="importSupplierResponseRequestType'">
<dataSource>
<attachmentRef href="cid:E36C913548344EDA1B7FC20CEDCEDEB3" />
</dataSource>
<rfgNumber value="RFQ00123"/>
</importDataRequest>

The above XML document is not a complete or valid SOAP request. It is a depiction of the XML
request that is generated by the client-side stubs.

v9.3..0.1 41

cid:E36C913548344EDA1B7FC20CEDCEDEB3

AIS Developer Guide

Importing Data Values

The Import Web service supports a variety of date formats based on several different criteria,

including user preferences and locale.

Note The upper limit for dates is today’s date + 150 years. Date values later than that are
invalid and cannot be imported.

Setting the Preferred Date Format and Time Zone

Each Agile user can select a preferred date format.

To change date format preferences for your Agile account:

1. In Agile Web Client, select Settings > User Profile > Preferences > Edit.

Select the desired date format in the Preferred Date Format field.

2
3. Select a GMT time zone in the Time Zone field.
4

Click Save.

Supported Date Formats

The Import Web service supports all combinations of date and time formats available in the
java.text.DateFormat class as well as additional formats. DateFormat provides many date
and time formatting styles based on locale. The following table shows date formats available for the

U.S. locale, evaluated in order:

Date Format

Example

MMM-dd-yyyy HH:mm:ss

Jul-10-2001 14:08:35

MMM-dd-yyyy HH:mm

Jul-10-2001 14:08

MMM-dd-yyyy hh:mm:ss a

Jul-10-2001 02:08:35 PM

MMM-dd-yyyy hh:mm a

Jul-10-2001 02:08 PM

MMM-dd-yyyy

Jul-10-2001

dd-MMM-yyyy HH:mm:ss

10-Jul-2001 14:08:35

dd-MMM-yyyy HH:mm

10-Jul-2001 14:08

dd-MMM-yyyy hh:mm:ss a

10-Jul-2001 02:08:35 PM

dd-MMM-yyyy hh:mm a

10-Jul-2001 02:08 PM

dd-MMM-yyyy

10-Jul-2001

EEEE, MMMM d, yyyy

Thursday, June 25, 1998

EEEE, MMMM d, yyyy hmm a

Thursday, June 25, 1998 1:32 PM

EEEE, MMMM d, yyyy h:mm:ss a

Thursday, June 25, 1998 1:32:19 PM

42

Agile Product Lifecycle Management

Chapter 4: Importing Data

Date Format

Example

EEEE, MMMM d, yyyy h:mm:ss a z

Thursday, June 25, 1998 1:32:19 PM GMT-05:00

MMMM d, yyyy

June 25, 1998

MMMM d, yyyy h:mm a

June 25, 1998 1:32 PM

MMMM d, yyyy h:mm:ss a

June 25, 1998 1:32:19 PM

MMMM d, yyyy h:mm:ss a z

June 25, 1998 1:32:19 PM GMT-05:00

MMM d, yyyy

Jun 25, 1998

MMM d, yyyy h:mm a

Jun 25, 1998 1:32 PM

MMM d, yyyy h:mm:ss a

Jun 25, 1998 1:32:19 PM

MMM d, yyyy h:mm:ss a z

Jun 25, 1998 1:32:19 PM GMT-05:00

M/dlyy 6/25/98

M/dlyy h:mm a 6/25/98 1:32 PM

M/dlyy h:mm:ss a 6/25/98 1:32:19 PM

M/dlyy h:mm:ss a z 6/25/98 1:32:19 PM GMT-05:00

Each date format is specified using a time pattern string where

y = year
M = month in year
d = day in month

h = hour in AM/PM (1~12)

m = minute in hour
s = second in minute
E = day in week

a = AM/PM marker
z = time zone

' = escape for text

" = single quote

The count of each letter such as “M” in the time pattern determines the format. For example, three
“M” characters indicate that the month is represented as text instead of a number; less than three

“M” characters means that the month is represented by a number.

For more information about Java date formats and time pattern syntax, see Sun’s documentation for
the SimpleDateFormat and DateFormat classes at:
http://www.javasoft.com/j2se/1.3/docs/api/index.html

v9.3..0.1

43

http://www.javasoft.com/j2se/1.3/docs/api/index.html

AIS Developer Guide

Specifying Time Zones
Date values can specify a GMT time zone. If a date value omits the time zone, the user's time zone
preference is used. Time zones must be entered in the following format:
GMT Sign hh:mm
where:
GMT = Greenwich Mean Time
Sign = + or -
h = hour in AM/PM (1 to12)

m = minute in hour

For example, “GMT-05:00" and “GMT+02:00” are valid time zones.
Note Do not use three-character codes (such as PST or PDT) to specify time zones. Three-
character time zone codes are unreliable because some are used for multiple time

zones. Consequently, the Agile server might resolve a three-character time zone code to
an incorrect time zone.

aXML and PDX Package Date Formats

For aXML and PDX packages, the Import Web service operation supports a subset of the ISO
String date format: yyyy/MM/ddTHH:mm:ssZ

Note The T and Z characters are optional.

44 Agile Product Lifecycle Management

	Oracle Copyright
	What's New in Release 9.3.0.1?
	Introduction
	Understanding AIS
	Key Features
	AIS Architecture
	AIS Folders

	Understanding AIS Web Services
	Web Services Architecture

	Web Services Operations
	Web Services Extensions
	Security Considerations

	Using AIS Web Services
	Overview
	Tools
	Client Programming Languages
	Accessing AIS Web Services

	Checking Your AIS System
	About AIS Java Samples
	Installing the Java SDK
	Installing Ant
	Building the Java Samples
	Running the Java Samples
	export.ExportData Usage
	export.ExportPartlist Usage
	importer.ImportData Usage
	importer.ImportSupplierResponse Usage
	importer.ValidateData Usage

	Creating a Web Service Client
	Generating the SOAP Request
	Agile and Non-Agile Web Service Clients
	Submitting the SOAP Request
	Processing the SOAP Response

	Extracting Agile Objects and Attachments
	Understanding Web Service Operations
	Using the exportData Web Service Operation
	Working with Queries
	Specifying Query Criteria

	Working with Sites
	Working with Filters
	Predefined Filters
	Ad Hoc Filters
	An exportData Filter Example

	Working with Formats
	An exportData Format Example

	Using the exportPartlist Web Service Operation
	Working with exportPartlist Queries
	Working with exportPartlist Filters
	An exportPartlist Example

	Importing Data
	Understanding the Web Service Import Feature
	Using the importData Web Service Operation
	Specifying Data Types
	Working with Data Sources
	Working with Operations
	Working with Mappings
	Working with Transforms
	Working with Options
	ChangeType and ChangeAutoNumber Options
	Options to Import Non-Existing Objects

	An ImportData Example
	Using the validData Web Service Operation
	Importing Supplier Responses

	Importing Data Values
	Setting the Preferred Date Format and Time Zone
	Supported Date Formats
	Specifying Time Zones
	aXML and PDX Package Date Formats

