ORAC L

Agile Product Lifecycle Management

Agile Configuration Propagation
v9.3.0.1

Part No. E15911-01
December 2009

Agile Configuration Propagation

Oracle Copyright

Copyright © 1995, 2009, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as
expressly permitted in your license agreement or allowed by law, you may not use, copy,

reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish or
display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be
error-free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject
to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR
52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500
Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is
not developed or intended for use in any inherently dangerous applications, including applications
which may create a risk of personal injury. If you use this software in dangerous applications, then
you shall be responsible to take all appropriate fail-safe, backup, redundancy and other measures
to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for
any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be
trademarks of their respective owners.

This software and documentation may provide access to or information on content, products and
services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third party content, products and
services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages
incurred due to your access to or use of third party content, products or services.

i Agile Product Lifecycle Management

CONTENTS

(0= Ted [N 0 0] o)/ 4 | | S0 USSP ii
Chapter 1 WeElCOmME T0 ACP ... it e e e e e aeens 1
L0 1YY TSP 1
PUIPOSE OF ACP ...ttt 1
FUNCHONS OF ACP......coiiitiieietseie sttt ettt n et 1
WHO WIll USE ACP? ...ttt ettt bbbt bbbt 2
WhO ShOUIA NOE USE ACP?......ooeiiieiseee ettt bbbt 2
IMPIOPET USES OF ACP...... ettt e e e s e st s ettt neenee e 2
System RequiremMents fOr ACPo e e 3
Platform REQUIMEMENES ...ttt 3
LICENSING REQUIFEMENESviiiececeeieteis sttt a bbbt e ettt d st et b st 3
Environmental REGUIFEMENLES ... ettt ettt ees et e sttt e 3
USING thiS IMBNUAL ...ttt ettt e e sttt e e s at et e e e nnte e snneeeesnneeeas 4
What's NEW iN AC P O3 ... ettt e e e ettt et e e e e e e e e teeeeeeea e e e e nnseeeeeaaeannnenneaeaeens 4
Changes to the Control File Schema (for previous ACP USEIS).........cccvviiiieeiiiiciiiiieeee e 5
Server Portals not supported (Copy, Rename, DEIEte)..........c.ciiriir e 6
Case Sensitive List Entries attribute removed (COPY)ervreieirriiriniirisiessis st sssssssessens 6
Changes in Rename section due to APINamME/USET ID ..o 6
Changes to Subobject Maps Section dUe 0 APINGME. ..o 8
(01 g =T o] (=] 2 1 = = o o 1= PP 11
T 1S3 =T Lot =4 31 R 11
U aTed] T =T o TR RTPR R 12
[0 = T =Y 0 SRR 12
=T o 11 L= I =T 5 0 SO 13
LT 1= 4 01 SRR 13
PrOCESS TEIMS ...eiiiiiie ettt ettt e e ettt e e e e e e e ee e et eeeee e s nntaeeeeaeaeeaaannsseaeeeaeesestnsnneaaeesananns 14
(0 LTS I T g RSP PEPPR 14
(O] o= T o) (T G I U LT O L] PP 15
Configuration ManAgEMIENTcoiii i e e e e e e e e s e e e e e e e s s re e e e e e e e e annrreaaaaeas 15
(070] g1 oW =1 (o] T IF= T U SRPRRR 15
Schematic of PLM CONfIGUIBTIONc..cuviiiiieitiee e 16
Validate AGIIe PLIM DALAccviiieeiiicieiicte ettt ettt b ettt 17
CrEALE @ PIOJECE ...ttt 17
CONfIGUIE AGIIE PLIM......o.viieiictee ettt ettt b bbb bbbt bbbttt n sttt en 17

v9.3.0.1 ii

Agile Configuration Propagation

EXPOrt AQMIN DAA ..ottt ettt R bbb b n st 17
IMport AdMIN Data fOr TESHNG.cv v 17
TeSt ADMIN DA ChANGESvoeveiriieiiiriieieireie ettt bbb 18
Prepare fOr DIY RUN ..ottt s b 18
EXECULE DIY RUN ... £ ettt 19
EXECULE GO LIVE ...ttt 19
Audit CONIGUrALION CANGES.......cuievieeiieieieieteieiste ettt ettt ettt bbbttt en s s 19
Chapter 4 ACP Product INfOrmationc.oouiiiiiiiiii e e e 21
TaS] ez 1 E= (o] g e) Y O = SRS RPI 21
PLM Client APPHCALIONveeiiiiieieeee e e e e e et e e e e e e e e e nareeeaaeeeeaanns 21
CommaNd-lNE USEI INTBIACE.cuuieiiicci bbb 22
eIV IS B QY o] o] o= 1T] o U RRRRRN 22
Propagation TOOlcoi ittt e e e e e e e e e e e s e e e ae e e e e e ————raaaeeaaararreaaaeeaaann 22
Propagation SHAtEGIESc.ovu et 23
Propagation MEthOU ..ottt 23
A Control File drives every Propagation or COMPariSONcueeiiiiiiieiiiiiiee et 23
API Name-based Rename and SUDODIECE MAPS ...t ettt 24
ACP Actions and Uses of the CoNtrol Filecooiiiiiiiiiii e 24
Copy Action (and Section 0f CONEIOL FIR)euiuriieiiiriieiieiscieieise et 25
Rename Action (and Section 0f CONIOI FIlR)........... e 26
Delete Action (and Section 0f CONTO FilE)viurieriiirieinecs s 26
Subobject Maps (SECtion 0f CONTOI File)...........c.ieiirecreer e 27
Ignore References (SECHON Of CONEIOL FIlE)........c.uiuiurirriiirireiiirieiriis sttt ssen 27
Name Compare and DEEP COMPAIE..........cuuiurierirririerireieisiseeees s bbb 28
10701 a1 iTo 0T =11To] g TN N/ o =T TSRS PRRI 29
Non-Propagating AdminiStrator ODJECESciuiuiriirise e 29
Type Filtering 0N CoNfIQUIALION TYPES.......cuiuriieiiiriieieisee sttt ettt 30
Object MatChing (MaPPING) ... cveerereireirieieiree ettt bbbt 32
Processing Order iN ACP ... oot e e e e e e e e e e e et e e e e e e e e sannnraneaeeeaaanns 32
ProCessing OrAEr RUIES ...t s 33
10701 a1 iTe 0T r=11To] g TN 111 (o] V2SSO PPRI 33
INtErNAtioN@lIZALION ... e 34
Chapter 5 User REQUITEMENTSuiiiiiiii it e e e e e e eeas 35
Standard PLM Privileges that can ACCESS ACPcoo i 35
Tailored ROIES fOr the ACP USETcuiiiiiiiee e 35
Privileges for the ACP USET ...t eab e e 35

iv Agile Product Lifecycle Management

Contents

Chapter 6 INSTAlING ACP ... e e e 37
RequIired INTOrMatioNoiiiiiiii e e e e e et e e e e e e e e earreeeaaeeeeaanns 37
OPEIALING SYSIEM ..ottt bbbttt 37
AGIIE PLM VEISION ...ttt bbbt eb st 37
APPHICALION SEIVET ...ttt b bbbt b bbb bbbt st s e bbbt 37
INSEAIIAHION DIFECIONY ... vveeereeei ettt bbb bbb 37
WOTK DIFECIONY ...ttt ettt bbb bbb s et bbb bbbt sttt bt 38
e =T = To (DT G TSP P PSPPSRt 38
Java RUNtiMe ENVIFONMENL ...ttt bbb 38
L 41 - PSP 38
WINAOWS INSTAIIALION.......ceoiiie e e e e e e e e e e e e e e e s nnnte e e e e e nnnneees 38
EXEFACE ... vttt e R RS R Rt ARt nn bt snnes 38
RUN TNSEAIIET ...ttt R bbbt bbbttt 38
UNIX (LINUX) INSEAIATION. ...t s e e e e e e e bee e e e nteeennnreeeeennees 40
EXEFACE ..o R AR R bbbttt 40
MaKE EXECULADIE ...t ettt ettt 40
RUN INSEAIIET ...t R bbbt s bbbt n e 40
Postinstallation TasKS...........iiiiiieii ettt e et e e e e e e e e e e e e e e e e e e annneeaaeeeaannns 41
ACP-INSLAlIEA DIFECIOTESvuivvievreecreieistieiset sttt sttt sttt bbbttt bbbt n et ent s 41
Chapter 7 RUNNING ACP ... e e e e et e et e et e et eanaanas 43
F O el o o] [T £ TR 43
ACP PrOJECE DIFBCLOMIESvuverctreeeieietseiei ettt ettt bbb bbb bbbt 43
SAMPIE PrOJECE DITECIOMYcvviecviet ettt ettt bbbttt ten 44
107 (=T 1T aTo TN o (o= o1 SRR 44
1 (0o o o] (=T 3 TSP 44
INEW PTOJECE ...ttt e 45
F O el o o] o= 4 =SSP 45
X O O o o i N S 46
O s Tor 1 o] €T PP SRP 47
O] Q7 o To [SR 47
O o o 1= SRRSO 47
RS T0 0] 4= PSRRI 48
Chapter 8 Configuring the ACP Control File.......c.oveiii e 49
X O O o o i N 1 S 49
DAY | I o 0 = U UURETP P 49
BIBIMENT ... bbb 50
Root Element or DOCUMENT EIEMENL ..ottt s e 51

v9.3.0.1 v

Agile Configuration Propagation

ELEMENE TGS ..vtevieeetieies et bbb bbbttt 51
E1EMENE AHTIDULES ..ottt ettt nnes 51
COMMENES N XML ...ttt bbb bbbt 51
SPECIAI CRAIACIETS ...ttt bbb bbbt 52
Business Logic Attributes in the Control File.............cooiiiiiiiie e 52
ODBJECES PEI FIIE 1. 52
FHIE PIETIX vttt s Rt 53
Criteria FOMCE UPAALE ..ot bbbt 53
AULONUMDBET FOTCE UPAALE ...ttt bbb bbbttt s s s 53
FOCE DEIEte LISE ENY ...t 54
INEW USEI PASSWOITc.evieeieieie ettt ea st bbb bbbt b bbb b et s e 54
Process EXtension ASSOCIALION RUIE...........ccoierieiricrte sttt st 55
USEI ASSOCIALION RUIE ...t bbb bbb bbb 55
1076] 41 (o] I i1 =TS 7= o1 1 o) o E- TSP 56
COPY (KCOPY>) SEOHON ...ttt ettt ettt bbbttt 56
RENAME (STENAME>) SEOHONeoveerericer bbb bbb 59
Delete (KABIETE®) SELHOM. ... s s bbbt 61
Ignore References (<ignore_refereNCes>) SECHONocvv e 62
Subobject Maps (<KSUDOBJECE_MAPS>) SECHONccvviieciricees et 63
Appendix A ACP Configuration TYPESiuiiiiieie e e e e e e e e e e 67
Supported ACP Configuration TYPESeiiiiiiiiiiiiiie et e e e e e e e e e e enneeeeee s 67
Configuration Types and MatCh KEYScocuiiiiiiiiie e 70
ReNamMIiNg SUDODJECEScooiiiiiie e eaee e e e 72
Configuration Types as Evaluated by Deep COMPAre..........ccccveeiiiieeeiiiiie e 72
Log and Report Files for DEEP COMPATE.........cueruriuierirriiesiseeiesiseinsesiseissssssesess st st ssssssssssssssssssesssssssessessssessnsns 79
Appendix B Java Regular EXPreSSIONSviuuiiiiiie et e e e e e e e 81
SPECIAI CRATACEIS ..ottt e et e e bt e e e e n e e e e st ee e enre e e e ennees 81
XML SPECIAI CRATACIEIS..... ettt e ettt e s ene b ensesen 81
Java Regular EXpression Special CharaClerS ...ttt s 81
Regular EXpression EXamPIES ittt e e 82
APPENIX C ACP PrOPEITIES ...t e e e e e e 83
Lot oT=T g YA To T U] o= T SRR 83
D C) T o T o o] o= (1= SRR 83
JAVA-SHYIE PrOPEIYot 84
PrOPEItY REEIENCESoucveiiceiiicie sttt st bbbt b b b en st s st et b s 84
INCIFECE REFEIBNCES ...ttt ettt e et e et et s et 84
L o] o TT 1= T SRR 84

vi Agile Product Lifecycle Management

Contents

AGIIE-OWNEA PrOPEITIESeecviiceiieieis ettt bbb bbbt 85
Agile-0efaulted PropertiEs ..ottt bbb bbbttt 85
CUSIOMET-OWNEA PrOPEITIES.........vvuiviviiecrete ettt ettt a bbbt b bbbt b bns 86
PN o o1=T oo Tl B I AN @ = Yo i | o) PN 89
Ao T4 Nl aTo = Tex (o] YRR OTRUPPOTRRRP 89
N1 T o (o] o = SRR 89
L0 0] g ST o] £ SRRSO PRPRRR 89
L0 I 103 3T PO 90
Propagation SCHPES ..o e e e e e e e e e e e e e e e e e arrnaaaaaeaaaan 90
BXPOMT <.ttt e RS R R s R bbb 90
0] 0 0] TR TT TP 90
RV 42T 7T TS o] S a0
VBISION ..ottt 8 b bR 42 AR R R b £ LR R £ AR E R e AR e R AR R Rt R bbbt en 90
Project Management SCrPLo e 91
CTBAIE_DIOJECE. ...ttt bbb 91
Password ENCryption SCHPL ... e 91
2101070 o]0 PSSR 9N
Object Name CompariSON SCrPL......cooiiiiiieiiiiii e e e e e e e e ebeee e nees 92
NAME_COMPACE ...e.veeerereesesesereeeseeeesesesesesesessasasesssaeseaeesesesesesesesesssssaesesesesesesassesasaeeseseseEeEetesesasasssseeresnsesetasasssssaennnsens 92
Object Detail CompPariSON SCHPLcooiiiiiie e e e e eneee e 92
0TS o010 0117 - PO 92
How to Generate the Deep Compare Difference REPOI.........c.cccuiiiviieiiieiecs s 92
Deep Compare DifferenNCe REPOIM ..ottt s e sne et rns s nnnas 93
Deep Compare Report SECHONS aNd FIEIASccvevriiuciiiieieissece et sss bbb s 94
APPENAIX E ACP EXIT COURS ...uiuiiiiiiiii ettt e e e e e e e e e e e e e e e e aneaeanaen 97
APPENIX F ACP Program LOQSo it e et et e e e e e e e e e e e e eaaanaen 99
RV =Ty oot T= 3 oo IR RO PTRRRPN 99
1670] g 1-To) =3 (=1 (o 011 § I I o e PP EP TP PPR 99
Anatomy 0f CONSOIE (STAOUL) LOGvrevieeririiiriieieirieietsse sttt ettt t et ent e 99
SaMPle CONSOIE (STAOUL) LOG ... vureuerrieereieieieireiee ettt bbbttt 100
Ly (o o o [P PRRT 102
EITOT MESSAGES ... vttt 102
ANLOMY OF thE EITOT LOG 1.vvvveirirciiieiiestie ittt s ettt bbbt 103
SAMPIE EITON LOG -.v.cvvrteiieeeie ettt bbb bbbttt 104
o Tt =TT oo ORI 105
ANGLOMY OF thE PIOCESS LOG ..vuvvvueeereiieeiseii ettt 105
SAMPIE PTOCESS LOG 1.vuvuvrvieiseiiieietseie ettt ettt bbbttt en et en bbb nt b 107

v9.3.0.1 Vii

Agile Configuration Propagation

viii Agile Product Lifecycle Management

Preface

The Agile PLM documentation set includes Adobe® Acrobat PDF files. The Oracle Technology
Network (OTN) Web site http://www.oracle.com/technology/documentation/agile.html contains the
latest versions of the Agile PLM PDF files. You can view or download these manuals from the Web
site, or you can ask your Agile administrator if there is an Agile PLM Documentation folder available
on your network from which you can access the Agile PLM documentation (PDF) files.

Note To read the PDF files, you must use the free Adobe Acrobat Reader version 7.0 or later.
This program can be downloaded from the Adobe Web site http://www.adobe.com.

The Oracle Technology Network (OTN) Web site
http://www.oracle.com/technology/documentation/agile.html can be accessed through Help >
Manuals in both Agile Web Client and Agile Java Client. If you need additional assistance or
information, please contact support http://www.oracle.com/agile/support.html
(http://www.oracle.com/agile/support.html) for assistance.

Note Before calling Oracle Support about a problem with an Agile PLM manual, please have
the full part number, which is located on the title page.

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services within the
United States of America 24 hours a day, 7 days a week. For TTY support, call 800.446.2398.
Outside the United States, call +1.407.458.2479.

Readme

Any last-minute information about Agile PLM can be found in the Readme file on the Oracle
Technology Network (OTN) Web site http://www.oracle.com/technology/documentation/agile.html

Agile Training Aids

Go to the Oracle University Web page
http://www.oracle.com/education/chooser/selectcountry _new.html for more information on Agile
Training offerings.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an otherwise empty line;
however, some screen readers may not always read a line of text that consists solely of a bracket or
brace.

This documentation may contain links to Web sites of other companies or organizations that Oracle
does not own or control. Oracle neither evaluates nor makes any representations regarding the
accessibility of these Web sites.

v9.3.0.1 ix

http://www.oracle.com/technology/documentation/agile.html
http://www.adobe.com/
http://www.oracle.com/technology/documentation/agile.html
http://www.oracle.com/agile/support.html
http://www.oracle.com/agile/support.html
http://www.oracle.com/technology/documentation/agile.html
http://www.oracle.com/education/chooser/selectcountry_new.html

Chapter 1
Welcome to ACP

This chapter includes the following:

OVBIVIBW ...ttt bbb
System RequIreMENtS fOr ACP ... e
USING ThiS MANUAL ...t
What's NEW i ACPO3........oee et bbb
Changes to the Control File Schema (for previous ACP users)

Overview

This guide describes the purpose, installation, and use of Agile Configuration Propagation (ACP).

ACP lets you propagate the configuration of one instance of Oracle Agile PLM to another instance
of the same version of PLM. The "configuration" can be thought of as the complete or partial
content of Java Client Administrator settings in one Agile instance.

It is up to you, the PLM administrator, to specify exactly what you want to be propagated. The
propagation may consist of the complete Administration data for an instance, or it may consist of a
selected subset of Administration data for an instance.

Purpose of ACP

= ACP facilitates the management of configuration data across multiple Agile PLM instances.

Agile PLM is configured by the settings in Administrator. The aggregate of defined settings in
Administrator is the configuration data. ACP lets you test your configuration changes or
additions outside your production environment so they are fully production-ready before they
“go live.”

= ACP automates some processes that the Agile administrator had to do manually.

The ACP utility provides an automated way to apply partial or complete configurations in one
Agile instance to another Agile instance.

Although ACP automates the configuration process, ACP only propagates Administrator data that it
is directed to propagate. It relies on data in its Control File to dictate what changes in one Agile
instance should be propagated to another instance.

You can save your configured Control Files — with descriptive filenames, and in project folders —
and re-use them for targeted propagations.

Functions of ACP

There are two basic functions that ACP performs: Propagating and Comparing.

v9.3.0.1 1

Agile Configuration Propagation

o Propagate Function

ACP propagates in two steps, Export and Import: A configurable Control File is used to list the
objects for ACP to propagate.

* ACP exports configuration data from Agile instance — the Source instance — to XML files.
* ACP imports configuration data from XML files to Agile instance — the Target instance.
@ Compare Function

When you want to discover and report differences between Agile instances, not propagate
changes, ACP's Compare function reports object-specific differences.

* ACP compares configuration objects between XML files (from the Source instance) and
Agile (the Target instance).

ACP93 enhances its previous level of comparing, called Name Compare, with a deeper level of
comparing, called Deep Compare.

See Name Compare and Deep Compare on page 28.

Who will Use ACP?

ACP is intended for Agile administrators, IT personnel, and Oracle Consulting — Agile Practice
consultants. This manual assumes that you have worked in Agile Product Lifecycle Management
(Agile PLM) as an Agile administrator. The Administrator module of Agile Java Client is documented
in Agile PLM Administrator Guide.

Who should not Use ACP?

ACP is not intended to be used by Agile end-users.

Because this tool has the potential to completely change how an Agile system functions, ACP
should not be used by anyone who does not fully understand the implications of any modifications
to a live PLM system.

Chapter 5, User Requirements on page 35, provides more details about appropriate roles and
privileges for ACP.

Improper Uses of ACP

o ACPis not an upgrade utility. ACP cannot properly complete an upgrade of Agile
PLM versions.

= ACP is not a synchronization tool. ACP expects a single source of record, an instance
that owns the configuration.

o ACPis not a “mass-update” tool. It is not intended to supersede Java Client behavior.

If you have questions about what ACP may or may not accomplish for your Agile PLM
installation, please contact your Oracle Consulting — Agile Practice representative.

2 Agile Product Lifecycle Management

Chapter 1: Welcome to ACP

System Requirements for ACP

This section summarizes the requirements for installation and use of Agile Configuration
Propagation.

Platform Requirements

@ ACP supports all operating systems that are supported by Agile PLM 9.3.x: Windows, Solaris,
and Linux. (ACP is not certified on AlX, although it may be used on AIX.)

= ACP is compatible with Oracle and BEA WebLogic application servers.

= ACP requires that the Source and Target instances use the same Agile PLM version; there is
now a formal "version check".

o ACP expects that the settings in the Licenses node are the same between Source and Target
instances. (This last point is detailed in the next topic.)

Licensing Requirements

Since ACP is an extension of the Administrator module in Java Client, implementing ACP requires no
additional license from Oracle.

Important ACP should propagate only Oracle-licensed configuration types, Oracle-licensed
configuration objects, and Oracle-licensed class attributes.

Regarding the settings in Administrator > Server Settings > Licenses, ACP expects that the settings in
this node are the same between Source and Target instances; that is, ACP does not compare the
Licenses node settings nor does it report on any discrepancies between the instances.

However, ACP does observe the settings in the Licenses node of both Source and Target Agile-
instances in this way:

* ACP can export data from the Source instance based on the base class/class (to which the
data "belongs") being enabled in Licenses node on the Source instance;

* ACP can import data to a Target instance based on the base class/class (to which the data
"belongs") being enabled in Licenses node on the Source instance.

Again, the settings in Licenses node for any owned and operating Agile system should conform to
the PLM solutions your company has purchased from Oracle.

Environmental Requirements

The ACP Client — where ACP is installed — must be able to connect via “http(s)” to the Agile-PLM
source and target instances. That is, firewalls must not prevent ACP from accessing the PLM
source and target.

v9.3.0.1 3

Agile Configuration Propagation

Note ACP does not need to be able to connect to both instances at the same time; however, it
must be able to connect to either the Source or Target instance based on the ACP
function being executed.

Using this Manual

Chapters 1-4 of this manual answer the question “What is ACP?”

@ ACP’s purpose, system requirements, what's new in ACP 9.3, and changes to the Control File
schema (ch. 1);

o Terms used in this manual (ch. 2);
= Use case for ACP (ch. 3);

o Chapter 4, “ACP Product Information,” gathers information about ACP’s product features, business
rules, and observations of its behavior. Chapter 4 is essential reading for ACP users. It is also useful
to "non-ACP-users" who want to understand how the product works.

Chapters 5-8 answer the question “How do | use ACP?”"
= |Installation (ch. 5);

= User requirements (ch. 6);

@ Running ACP (ch. 7); and

@ Configuring the Control File (ch. 8).

Appendices A—F provide reference material.

The appendices give more detailed information:

= ACP configuration types, match keys, renaming subobjects, and how Deep Compare evaluates
the configuration types (app. A);

@ Java regular expressions (app. B);

o ACP properties (app. C);

= ACP scripts, including propagation scripts and comparison scripts (app. D;
= ACP exit codes (app. E); and

= ACP program log file samples (app. G).

What's New in ACP
ACP9.3.0.1

There are no new features in ACP 9.3.0.1.

4 Agile Product Lifecycle Management

Chapter 1: Welcome to ACP

What's New in ACP 9.3

This list summarizes the enhancements to ACP in Release 9.3:

@ API Name—based Rename and Subobject Maps — see API Name-based Rename and
Subobject Maps on page 24

= Object Matching — Object Matching (Mapping) (on page 32)

o Type Filtering on Configuration Types — see Type Filtering on Configuration Types on page 30

= Name Compare, Deep Compare, and the Deep Compare Difference Report — see these topics:

Name Compare and Deep Compare on page 28;

Attribute Name and Attribute-Property Name Comparison Script on page 92;

Deep Compare Difference Report on page 93;

Log and Report Files for Deep Compare on page 79

= Autonumber Force Update — see Autonumber Force Update on page 53

o= Event Management, including Create/Delete of event-based notifications — the main feature
introduced in PLM 9.3, Event Management, is completely supported by ACP 9.3. This includes
propagating event-based notifications (i.e., those created as Notification masks, not the out-of-
box default notifications)

o New Error Message Header — see Error Messages on page 102

* Error Message on:
= Unmatched Regular Expressions
= Unused Subobject Maps

ACP supports propagating data in all languages that are supported by Agile PLM.

Changes to the Control File Schema

There have been no changes to the Control File schema in Release 9.3.0.1.

There have been numerous changes to the Control File schema in Rel. 9.3. Some elements of the
old schema syntax will no longer work. This section lists those elements of the Control File that
have been removed or are no longer supported or have otherwise changed since ACP 9.2.x.

These are important if you are a previous user of ACP and have customized Control Files that are
still useful. The elements below should be properly changed. If any of these are present, the Control
File will throw an error and not complete.

You may disregard this list of changes if:
= You are a new customer to Agile PLM, or
o You are a customer of Agile PLM 9.2.x and you did not use ACP, or

B You have used ACP 9.2.x but are not going to use old Control Files with ACP 9.3.

v9.3.0.1 5

Agile Configuration Propagation

Server Portals not supported (Copy, Rename, Delete)

Agile PLM no longer supports Portlets (Agile Portlet Services). The administrator could go to Server
Settings > Locations > Portals tab to create and manage portals. The corresponding ACP tag was
<server_portal>.

Therefore, <server_portal> is no longer supported in the Copy, Rename, or Delete sections of
the Control File. You should remove the tag from your existing Control Files.

Error Message: "cvc-complex-type.2.4.a: Invalid content was found starting with element
'server_portal'."

Case Sensitive List Entries attribute removed (Copy)

The <case_sensitive_list_entries> attribute tag has been removed from List (<1ist>)in
the Copy section of the Control File.

Functional Replacement: List Entries are now matched by their APl Name instead of their Name.
The attribute provided an alternative to the Subobject Maps for List Entries when only the case of
the List Entry name changed. Now a Subobject Map is required if any part of the APl Name for the
List Entry has changed, even if only the case changed.

Error Message: "cvc-complex-type.3.2.2: Attribute 'case_sensitive_list_entries' is not allowed to
appear in element 'list'."

Changes in Rename section due to APl Name/User ID
The following changes all apply to the Rename section of the Control File.
Rename by APl Name

With the introduction of APl Name to Administrator nodes, APl Name is now the preferred identifier
(key) for mapping Administrator nodes between Agile instances. This change should require fewer
rename actions to be performed as it is expected that APl Names will tend not to be changed.

The following Administrator nodes are affected by this change in the Rename section of the Control
File:

@ ACS Destination (<acs_destination>)

= ACS Event (<acs_event>)

o ACS Filter (<acs_filter>)

o ACS Package Service (<acs_package_service>)

= ACS Response Service (<acs_response_service>)
= ACS Subscriber (<acs_subscriber>)

= Auto Number (<auto_number>)

o Character Set (<character_set>)

6 Agile Product Lifecycle Management

Chapter 1: Welcome to ACP

o Criteria (<criteria>)

o List (<list>)

@ PPM Dashboard Management (<ppm_dashboard_management>)
o Privilege (<privilege>)

o Process Extension (<process_extension>)

= Role (<role>)

= Server File Manager (<server_file_manager>)

o Subclass (<subclass>)

o Unit of Measure Family (<unit_of_measure_family>)

= Workflow (<workflow>)

Functional Replacement: The rename functionality still exists; it is just that the APl Name is being
renamed rather than the Name. This requires two changes to the Control File on your part:

1. Use different tag names (source_apiname and target_apiname instead of source_name
and target_name);

2. Specify the new and old APl Name instead of the new and old Name.

Error Message: cvc-complex-type.2.4.a: Invalid content was found starting with element
'source_name'. One of '{"":source_apiname}' is expected.

Rename by User ID

With the introduction of APl Name to Administrator nodes and since Users are identified by their
login ID for mapping Users between Agile instances, we have elected to make the XML attribute
name reflect what is being mapped.

The Users (<user>) Administrator node is affected by this change in the Rename section of the
Control File.

Functional Replacement: The rename functionality still exists. This requires one change to the
Control File on your part: use different tag names (source_userid and target_userid instead of
source_name and target_name).

Error Message: cvc-complex-type.2.4.a: Invalid content was found starting with element
'source_name'. One of '{"":source_userid}' is expected.

Rename no longer supported

With the introduction of APl Name to Administrator nodes, APl Name is the preferred identifier (key)
for mapping Admin nodes between Agile instances. For Administrator nodes that are entirely owned
by Agile, the APl Name cannot be changed. In these cases, there is no longer a need to have a
rename for the Administrator node.

The following Administrator nodes are affected by this change in the Rename section of the Control
File:

v9.3.0.1 7

Agile Configuration Propagation

o Base Class (<base_class>)

o Class (<class>)

o Cost Status (<ppm_cost_status>)

o Quality Status (<ppm_quality_status>)

o Resource Status (<ppm_resource_status>)
o Schedule Status (<ppm_schedule_status>)

o Database (<server_database>)

Functional Replacement: The replacement is that ACP will map these objects by their APl Names.
Since the APl Name cannot be changed, the functionality for this feature is complete without any
assistance from the Control File.

Error Message: cvc-complex-type.2.4.a: Invalid content was found starting with element '<admin
node tag name>'.

Changes to Subobject Maps section due to APl Name
The following changes all apply to the Subobject Maps section of the Control File.
Subobject Map object reference by APl Name

With the introduction of APl Name to Administrator nodes, APl Name is now the preferred identifier
(key) for mapping Administrator nodes between Agile instances. This change should require fewer
subobject maps as it is expected that APl Names will tend not to be changed.

The following Administrator nodes are affected by this change in the Subobject Maps section of the
Control File:

o Base Class (<base_class>)

o Class (<class>)

o List (<list>

o Subclass (<subclass>)

o Unit of Measure (<unit_of_measure_family>)

= Workflow (<workflow>)

Functional Replacement: The subobject map functionality still exists; it is just that the APl Name is
being used to identify the object rather than the Name. This requires two changes to the Control File
on your part:

1. Use different attribute name (apiname instead of name);

2. Specify the object’'s APl Name as its identifier.

Error Message: cvc-complex-type.3.2.2: Attribute 'name’ is not allowed to appear in element
'<Admin Node tag name>'.

8 Agile Product Lifecycle Management

Chapter 1: Welcome to ACP

Subobject Map subobject identified by APl Name

With the introduction of APl Name to Administrator nodes, APl Name is now the preferred identifier
(key) for mapping Subobject nodes between Agile instances. This change should require fewer
subobject maps as it is expected that APl Names will tend not to be changed.

The following Subobject nodes are affected by this change in the Subobject Maps section of the
Control File:

= Base Class (<base_class>) - Life Cycle Phases (<life_cycle_phases>)

o Class (<class>) - Life Cycle Phases (<life_cycle_phases>)

o List (<list>) = List Entries (<list_entries>)

o Subclass (<subclass>) - Life Cycle Phases (<life_cycle_phases>)

= Unit of Measure (<unit_of measure_family>) - Units of Measure (<unit_of measures>)

= Workflow (<workflow>) - Workflow Statuses (<workflow_statuses>)

Functional Replacement: The subobject map functionality still exists; it is just that the APl Name is
being renamed rather than the Name. This requires two changes to the Control File on your part: 1)
use different tag names (source_apiname and target_apiname instead of source_name and
target_name; 2) specify the new and old APl Name instead of the new and old Name for the
subobject being referenced.

Error Message: cvc-complex-type.2.4.a: Invalid content was found starting with element
'source_name'. One of {"":source_apiname}' is expected.

Subobject Map no longer supported

With the introduction of APl Name to Administrator nodes, APl Name is now the preferred identifier
(key) for mapping Subobject nodes between Agile instances. For Subobject nodes that are entirely
owned by Agile, the APl Name cannot be changed. In these cases, there is no longer a need to
have a subobject map for the Subobject node.

The following Subobject nodes are affected by this change in the Subobject Maps section of the
Control File:

o Class (<class>) = User Interface Tabs (<user_interface_tabs>)

o Subclass (<subclass>) - User Interface Tabs (<user_interface_tabs>)

Functional Replacement: The replacement is that ACP will map these subobjects by their API
Names. Since the APl Name cannot be changed, the functionality for this feature is complete
without any assistance from the Control File.

Error Message: cvc-complex-type.2.4.a: Invalid content was found starting with element
'user_interface_tabs'. One of {"":attributes, "":life_cycle_phases}' is expected.

v9.3.0.1 9

Chapter 2
ACP Terms

This chapter includes the following:

Instance Terms
Function Terms
DA TEIMS ...ttt ettt et sttt s et et et e s e et et et e st s eeteeeeaesests et ete st seese et eaese et e e erenteaeteeteaeseste e areneans
Machine Terms
File TEMMS ..o

PIOCESS TEBIMIS... ettt ettt sttt sttt te e et et st ese st e b e st esese et e aesbess st ebe s ebe e et e se st ensseebesteteseateanstensses
L0 LT T 1T

Instance Terms

Your company will likely have several instances of Agile PLM, which have been set up for specific
purposes. (These purposes are detailed in the next chapter, Use Case on page 15.)

First there are two "instance" terms that simply name "From" and "To" installations when you use
ACP:

u]

Source instance — the installation of Agile PLM from which you are propagating Administrator
data with ACP

Target instance — the installation of Agile PLM to which you are propagating Administrator data
with ACP

Beyond Source and Target, the instance names below are suggestions: they are not required in
order to use ACP; however, these names are used in this manual as defined below, notably in Use
Case (on page 15).

u]

m]

Agile instance — an autonomous system of Agile PLM that maintains data in a single database
Golden Configuration instance — a controlled environment to make configuration changes in.

The “Golden Config” Agile PLM instance is for maintaining a clean, controlled configuration
environment. Normally, it would exist with only configuration data and no business data. The
critical aspect to this instance is the amount of control on it. If your installation has a practice of
making configuration changes in your Production instance, you will need to update your Golden
Config instance periodically with configuration information from your Production instance.

Development instance — for developing and testing new features in PLM, and other improvements

The “Dev” Agile PLM instance is where any configuration changes should be tested before
taking them to your Production instance. By its nature, the Development instance is not a
controlled instance and its configuration may therefore not be “clean”. It is prudent to update
the Dev configuration from Production before starting a new project. This will help avoid lost
configurations.

Stage or Test instance — for testing in a Production-like environment the changes made in the

v9.3.0.1 11

Agile Configuration Propagation

Development instance before they are applied to the Production instance

The Stage Agile PLM instance is a Production-like instance that can serve two purposes: (1)
perform dry runs of ACP prior to going live; and (2) an instance for training your user
community on the feature changes provided by the latest configuration changes.

Production instance — contains your company’s live data and business objects

The Production Agile PLM instance is the ultimate master instance. This is where business is
being conducted. It must stay pure and always be in a consistent state.

Function Terms

propagate — when an Agile instance has been changed, no matter if a single change to a single
object’s attributes or sweeping changes across the system, “propagate” is the broad idea of
effecting the same change to another Agile instance.

ACP propagates in two steps, Export and Import:

* export— ACP gathers data from the Source instance of Agile. The result of the Export
function in ACP is an XML file, or archive, of the Source.

* import— ACP replaces data from XML (the Source archive) into the Target instance of
Agile.

Note ACP's export and import functions should not be confused with either the PLM
utilities Agile Export and Import, nor Administrator Export and Import in Java
Client.

compare — ACP compares between Source-instance and Target-instance data so it can report
object-specific differences between the two Agile instances.

There are two kinds of Compare in ACP:

* Name Compare — the name-based comparison identifies new objects, deleted objects, and
objects whose name changed. (This is the same compare function supported by ACP
9.2.x.)

® Deep Compare — ACP can examine Administration objects at a deeper level, the level of
object attributes. With Deep Compare, Admin objects in the Source instance are compared
to those in the Target instance to capture changes in the names and properties of object
Attributes.

Data Terms

API Name — a required field for many Administrator objects and PLM business objects; as it
tends not to change (whereas the Name attribute is much more likely to change), it is a unique
systemwide identifier or key for Admin/PLM objects.

object key — a business object's key is the APl Name if the Administrator node supports it, or the
object's Name if the node does not support APl Name; in the case of Users, the object key is
User ID. This term is important when ACP is performing the operations listed in "Process
Terms".

configuration data, Administrator data — the content of all the settings in PLM Administrator
represent the configuration data for an instance of Agile PLM. These two terms are

12

Agile Product Lifecycle Management

Chapter 2: ACP Terms

interchangeable.

@ configuration type, Administrator node — the content of the settings of one node in the
Administrator Ul “tree.”

These terms are also interchangeable, although there is not one-to-one correspondence. Some
Admin nodes are never propagated by ACP, and some config types are not nodes in
Administrator.

So, when you propagate the data settings held in the Roles node in Administrator, you are
propagating the Roles configuration type in ACP.

= configuration object, Administrator object — the content of the settings for a single item in an Admin
node.

So, when you propagate the data settings held in the Change Analyst role in Administrator
(User Settings > Roles node > Change Analyst role), you are propagating the Change Analyst
configuration object in ACP.

Machine Terms

o Agile Server — the machine where Agile PLM is installed
o ACP Client — the machine where ACP will be run

= Agile Install Directory — this is the directory you choose to install the ACP utility. "<version>"
indicates where you would fill in the version of Agile PLM that you are working in, for example,
ll93ll.

Example in Windows: D:\Agile\ACP<version>
Example in Unix: /opt/agile/acp<version>
@ ACP Utility — the collective set of files installed in the <ACP Install Directory>

@ Project Directory — this directory contains ACP control files, which are named — or in named
folders — in such a way that you know what the control file is targeted to do. "<version>"
indicates where you would fill in the version of Agile PLM that you are working in, for example,
ll93ll'

Example in Windows: D:\Agile\ACPWork<version>

Example in Unix: <user.home>/aAgile/ACPWork<version>

File Terms

o ACP scripts — since ACP is a command-line—driven utility, in effect the scripts are the “User
Interface” for interacting with the ACP programs.

= ACP Control File — the Control File (default name: config.xml) directs ACP which configuration
types to process. (It is possible to keep config.xml as an "example control file" and create
working control files with meaningful names. This idea is detailed in Chapter 5, Running ACP
(on page 43).)

o Agile XML archive — a ZIP file with an extension (.agl) that contains XML files exported by ACP

v9.3.0.1 13

Agile Configuration Propagation

Process Terms

Delete — a propagate action; the Delete section of the Control File instructs ACP about delete
operations it should perform;

Rename — a propagate action; the Rename section of the control file instructs ACP about rename
operations it should perform;

Copy — a propagate action; the Copy section of the control file instructs ACP about create,
update, and replace operations it should perform.

User Terms

Agile user — a person at your company who has been created in the Agile PLM system and
assigned an Agile role that permits use of the PLM system; also called “end-user” (or simply
“user,” although this could be confused with the other users listed below)

Administrator user — an Agile user who has been assigned the Administrator role (or, more
specifically, the Administrator privilege mask), which enables access to the Administrator
modules in Java Client and Web Client; usually referred to as “administrator” (lower-case “a”),
“Agile administrator,” or even the “Admin user”

User Administrator — a specialized Agile administrator (an Agile user who has been assigned the
“Admin Access for User Admin” privilege mask) whose role is limited to management of users
and user groups

ACP user — a person at your company who uses the ACP utility could be called an “ACP user,”
but formally it means “an Agile user who has been given role/privilege access to use ACP.”

14

Agile Product Lifecycle Management

Chapter 3
Use Case

This chapter includes the following:

= Configuration MANAGEMENLcccuiuiiiiriieiietsiee ettt bbb s bbb bbbt sna e 15
S 0001 10U = {To] T I]GO 15

This chapter is an overview of the administration configuration management process of Agile PLM
as a whole. You may choose to do some tasks below or add tasks that are not mentioned here.

Configuration Management

The primary use case for ACP is configuration management across two or more Agile PLM
instances. Individual installations may vary in how instances are used and what configuration
procedures are followed.

Note Configuring the Agile PLM solutions requires full understanding of your company’s
business goals and procedures. Successful configuration of PLM — initial or upgrade —
often requires a representative from Oracle Consulting — Agile Practice.

Agile Configuration Propagation supports regular and frequent cycles of developing, testing, and
deploying Administrator configuration of the PLM solutions. ACP allows you to propagate the entire
configuration or only a subset of the configuration.

Regardless of the amount of configuration data being propagated, the following tasks offer
recommended best practices, at least until you become familiar with ACP and its limitations.

These tasks are in a suggested order to be executed, however, the order should be changed to
facilitate your process.

For the discussion below, please refer to Instance Terms (on page 11) for the definitions of various
kinds of Agile instances, such as Golden Config, Dev, Stage, and Production.

Configuration Tasks

The configuration tasks that are discussed in this section are also schematically depicted in the
graphic below.

v9.3.0.1 15

Agile Configuration Propagation

Schematic of PLM Configuration

Jawa
Cliett gy

Dty Run
Feedback

Golden
Cimfig
(Agile PLM)

ACP Export |

Testing
Feedback
4?}533 ir_nport ACP Import ACP Import
eemigmtins) (Dry Run) (Go Livel)
A J
Dev Stage Production
(Agile PLRT) (Agile PLRT) (Agile PLRT)
{snapshot of
Production}
ACP Export
[for Revision Contwol)
¥
Data
XML Files

Agide PLM
Corfiguration
Reposiory

16

Agile Product Lifecycle Management

Chapter 3: Use Case

Validate Agile PLM Data

Use aVerify to validate the data in an Agile PLM instance. A good practice whether or not you are
using ACP is to periodically validate PLM data.

Keeping your data valid ensures smooth operation of your Agile PLM instance. All Agile PLM
instances should be validated before accessing it with ACP.

Since ACP only propagates Administrator data, you can limit your concern about data issues to
Administrator data.

For information pertaining to aVerify, please consult aVerify Release Notes (on OTN, see Preface)
or contact Oracle Support Services.

Create a Project

Use ACP Control Files to denote a set of related configuration changes.

Although you can propagate all configuration data in a single run with ACP, it is better to group
related configuration changes. These groups can be called projects. Each project can have its own
lifecycle.

In the Control File, you can explicitly state which objects belong to the project. Projects can also be
reused.

Configure Agile PLM

Use Java Client to modify Admin data in the source instance (Golden Config or Dev). Avoid making
Admin data changes in your Production instance as those changes can get lost during subsequent
ACP imports.

o= Keep track of Admin objects changed in your project control file. This will ease the burden of
trying to figure out which Admin objects need to be propagated later.

o Use a spreadsheet to keep track of actual changes made. This will aid in validating the
propagation results.

Export Admin Data

Use ACP to export the Admin data related to a project from the source instance (Golden Config or
Dev). Refer to Running ACP (on page 43) for more information.

Import Admin Data for Testing

Use ACP to import the Admin data that is related to a project.

This task is oriented toward moving Admin data from the Golden Config instance to the Stage
instance. Remember, new features will be developed and tested on the Dev instance, but they
should be tested again on the Stage instance before exposing the Production instance to these
changes.

v9.3.0.1 17

Agile Configuration Propagation

The Dev instance is also an appropriate place to develop process extensions. The process
extensions can also be tested with the modified Admin data.

o Use ACP to import the Admin data related to the project to the target instance.
o Review ACP logs for errors.

= Verify that the propagation worked as expected. Use the spreadsheet used to track changes for
the project to verify that the Admin data changes are present in the target instance.

Test Admin Data Changes

Use the Agile PLM application to test the Admin data changes in the Test instance.
o= Develop a formal test plan to test the changes.

o Develop a Go Live! “sanity test plan”.

= Execute the formal test plan.

= Validate the test plan results.

@ Adjust the Admin data in the source instance (Golden Config or Dev) as necessary.

Prepare for Dry Run

Use ACP to prepare for a Dry Run. You want to make sure that ACP will propagate all Administrator
data changes associated with a project. The way to do this is by comparing the configuration data in
the source instance (Golden Config or Dev) and the target instance (Stage). This task comprises
several steps:

= Create a backup of the Production instance.
o Refresh the Stage instance from the Production instance.

o Sanitize the Stage instance.
® Turn off notifications.
* Change Production-only Admin data to have suitable values for Stage.

= Compare the Admin Data between the source instance and the target instance.

* Use ACP to export the Admin Data from the target instance (Stage). This can be the entire
Admin data or just limited to the Admin data related to the project.

®* Use ACP to export the Admin Data from the source instance (Golden Config or Dev). This
only needs to be done if you wish to compare the entire Admin data with the target
instance.

®* Compare the XML files generated by ACP.
o Update the configuration data in the source instance as necessary.

= Update the project ACP control file as necessary.

18 Agile Product Lifecycle Management

Chapter 3: Use Case

Execute Dry Run

Use ACP to execute the Dry Run. Note: multiple Dry Runs may be warranted. Dry Runs typically
use the Stage instance as the target instance. At this point, your project ACP control file should be
configured to propagate all Admin data related to the project.

= Lock out users from logging into the target instance. This ensures your backup is valid.
= Back up target instance. It is best to back up your target instance for recovery purposes.

@ Develop a Propagation Script. This script will document the exact steps used to propagate the
data to the Production instance. It is used to document the order in which steps are performed
as well as any manual steps required.

o Use ACP to export the Admin data related to the project from the source instance (if not
already done).

= Use ACP to import the Admin data related to the project to the target instance.
= Review ACP logs for errors.

o Verify that the propagation worked as expected. Use the spreadsheet used to track changes for
the project to verify that the Admin data changes are present in the target instance.

= Execute the formal test plan.
@ Adjust the Admin data in the source instance (Golden Config or Dev) as necessary.

= Re-run the Dry Run as many times as necessary to get a clean run of ACP.

Execute Go Live

Use ACP to execute the “Go Live” task. The Go Live task copies the Admin data changes from the
source instance (Golden Config or Dev) to the Production instance.

o Lock out users from logging in to the Production instance. This ensures your backup is valid.

= Back up Production instance. It is best to back up your Production instance for recovery
purposes.

= Follow the Propagation script created during the Dry Run.
o Use ACP to import the Admin data related to the project to the Production instance.
o Review ACP logs for errors.

= Verify that the propagation worked as expected. Use the spreadsheet used to track changes for
the project to verify that the Admin data changes are present in the target instance.

o Execute the Go Live sanity test plan.

@ Allow users to log in to the Production instance.

Audit Configuration Changes

Use ACP and a source control system to keep track of the changes made.

v9.3.0.1 19

Agile Configuration Propagation

= Export entire Admin data from the Production instance.

= Place the AGL file created into any source control system.

20 Agile Product Lifecycle Management

Chapter 4
ACP Product Information

This chapter includes the following:

B INSEAHALON Of ACP ... 21
B PLM ClENt APPICALION.........eeieiirieieeisceeiei i 21
B PLM SDK ADPHCALON «...cvvrtieistiiii ittt b 22
B PrOPAgation TOONcuiuiueiieiseici it e 22
= A Control File drives every Propagation or COMPANISON..........ccriiiirienirenienienissieessse s ssssssssssssessssesseens 23
= ACP Actions and Uses 0f the CONrOl Filcririiniiiecieissisiessines e 24
S 00 o1 10 ¥ = iTo] (T Y] o= OO EPRPPPT 29
= ProCessing OrAEI N ACP.........o s s b 32
B CONFIGURALION HISTOMYceueeieic e 33
B INEMNAHONANIZATION. ... e 34

This chapter is mandatory reading for the ACP user. The rest of this manual builds on the
information in this chapter.

"ACP Product Information" is also written to the general reader who wants an overview of ACP’s
product features, business rules, and observations of its behavior.

Installation of ACP

As a client application, ACP may be installed on the same machine as an Agile PLM server, or on a
separate machine.

@ ACP can be installed on the following operating systems: Windows, Linux, Solaris.

= ACP can work with the following application servers:
® Oracle Application Server (OAS)
* WeblLogic Application Server (WLS)

o The ACP version must match the Agile PLM version it is interacting with. The key factor is this:
the APIs that ACP uses must be available and have the same serialization.

= ACP can access an Agile instance from the same machine, over a LAN, or over a WAN.

If the source and target instances are separated by a WAN, for better performance it is highly
recommended that you copy the .agl file to the local LAN where the target instance is.

PLM Client Application

ACP is simply a client of Agile PLM.
ACP requires the source and target instance to be the same version of PLM.

ACP does not require that the source and target instances be on the same application server.

v9.3.0.1 21

Agile Configuration Propagation

To use ACP, an Agile user must have the Administrator privilege mask for that Agile instance.
There are specialized roles that can be tailored for users to have less than full access to the
Administrator module of an Agile instance.

@ ACP does not have “super-user” capability: it can access only those Admin objects for which
the ACP-user has privileges.

= ACP adheres to the security policy assigned to the user used to connect to the Agile server.
This security policy is managed through privileges. It is possible to have multiple ACP users:
each user could be limited to different portions of the Administrator data.

Command-line User Interface

ACP is initiated via the Command-line through an MS-DOS shell on the Windows operating system
or one of the various shells available on the Unix operating system.

Several predefined “run” scripts are included with the ACP installation. These run scripts share
variables and use command-line parameters to find:

= Connection information for connecting to Agile instances;
o Location of the Control File;
o Location of an ACP XML archive;

= Log file information.

PLM SDK Application

ACP is also considered as an Agile-PLM SDK application. As such, ACP adheres to all business
rules imposed by the application. ACP interacts with Agile PLM in the same manner that Java Client
interacts with the Agile application server.

ACP connects to an Agile instance using the same URL used by any SDK application. This URL is
similar to the URL used to access the Agile Web Client (http://<host name>[:<port
number>]/Agile).

o ACP is susceptible to any existing defects in the Agile server or SDK. It does not work around
these defects.

o ACP does not access the Agile PLM database directly.

Propagation Tool

ACP has been expressly designed as a propagation tool. ACP’s primary purpose is to update or
create Administrator objects in a target Agile instance just as they are configured in the source
instance. A secondary purpose is to compare Administrator objects between source and target
instances so you are certain about what is different between the two. How ACP propagates and
compares is discussed below in this chapter.

As a reminder, there are several kinds of operations that cannot be accomplished by ACP:

22 Agile Product Lifecycle Management

Chapter 4: ACP Product Information

= ACPis not an upgrade utility. ACP cannot properly complete an upgrade of Agile PLM versions.

= ACP is not a synchronization tool. ACP considers only one Agile instance, the source instance, as
the source of record for the configuration data: the source instance owns the configuration. It is
also expected that the source Agile instance and target Agile instance are at the same product
level (version).

= ACPis not a “mass-update” tool. It is not intended to supersede the Java Client behavior.

Propagation Strategies

ACP uses a “best-it-can-do” strategy: its goal is to make the propagated objects look the same in
the target as it does in the source. Because PLM business rules, or unforeseen errors, can prevent
ACP from fully propagating an object, sometimes this goal is not achieved; some objects may be
partially propagated, or some objects may not be propagated at all.

= ACP does not propagate with an “all-or-nothing” strategy.

@ If any errors are reported during the propagation, ACP cannot ‘guarantee’ that the propagation
worked correctly.

Propagation Method

ACP uses a two-step propagation method:

1. Export — ACP first exports the objects to propagate from one Agile instance to an Agile XML
archive;

2. Import— ACP's second step is to import objects in an Agile XML archive to an Agile instance.
This method allows you to place the Agile XML archive under source control.

This method can be used to overcome any performance issues ACP may have when used over a
WAN.

A Control File drives every Propagation or Comparison

The Control File tells ACP what specific configuration types it should examine when it is run. A
Control File can be run as a "compare" — using Name Compare or Deep Compare scripts — where
configuration types are specified for informational and reporting purposes. A Control File can be run
as a propagation where configuration types are specified for altering the target instance using
Delete, Rename, or Copy (Create, Update, Replace) actions.

The Control File has a defined schema, which allows you to use tools like XMLSpy to edit the
Control File.

The Control File allows you to be as general or specific with the objects you want ACP to propagate
through the use of regular expressions.

ACP does not track anything from propagation to propagation. Because it is not possible for ACP to
determine what has been deleted in the source instance, the Control File must explicitly direct ACP
to delete configuration items.

v9.3.0.1 23

Agile Configuration Propagation

ACP does not automatically propagate dependent objects. All propagated objects must explicitly
match one of the include patterns and none of the exclude patterns in the Control File.

Using Compare reports as a guide, you can determine which configuration items can be included in
the propagation and which ones can be excluded from the propagation.

= There is a shorthand notation for specifying all objects of an Administrator node.

= There is no limit on the number of include or exclude regular expressions that may be entered.
o Name maps must use exact names.

o Delete names must use exact names.

o The Control File Schema allows tools like XMLSpy to help in configuring the control file.

@ The order in which Administrator nodes are configured has no bearing on the processing order.

@ ACP does not propagate by a change list; Agile PLM Administrator does not support the notion
of a change list.

= ACP does automatically propagate the relationships between objects if both objects exist in the
target. If only one of the objects in the relationship changed, it is only necessary to propagate
that object. For example, if a role is added to a privilege, only the privilege needs to be
propagated unless the role did not previously exist.

APl Name-based Rename and Subobject Maps

The API Name attribute has been added to all Administrator nodes (with some exceptions). API
Name is now the preferred identifier (key) for mapping Administrator nodes between Agile
instances.

Renames and Subobject Mapping are now based on the API Name attribute. This change should
require fewer rename actions to be performed, as well as fewer subobject maps, as APl Names will
not be changed.

The APl Name attribute is supported in ACP (for all PLM objects that support APl names) with the
tags <source_apiname> and <target_apiname>.

Users are renamed with the tag <source_userid>. This is only used when the User ID is
changed.

There are also Administrator objects where <source_name> and <target_name>.are used.

ACP Actions and Uses of the Control File

ACP supports these actions or operations: Copy, Rename, and Delete. The actions performed by
ACP correspond to named sections in the Control File.

= The Copy action allows you to propagate an object’s configuration from a Source instance to the
Target instance using a Create, Update, or Replace operation;

= The Rename action allows you to rename objects in the Target instance;

o The Delete action allows you to delete objects in the Target instance.

24 Agile Product Lifecycle Management

Chapter 4: ACP Product Information

There are two additional sections of the Control File that do not instruct propagation changes:
o Ignore References directs ACP to ignore references to certain objects that will not be propagated.

o Subobject Maps allows ACP to match subobjects with different names between the Source and
Target instances;

These three propagation actions and two (nhon-propagating) sets of instructions are briefly described
below, and are more fully detailed in Chapter 8, Configuring the ACP Control File (on page 49).

The two compare scripts, Name Compare and Deep Compare, are also introduced below.

Copy Action (and section of Control File)

The Copy action uses regular expressions to identify the objects to copy.

The regular expressions come in two forms: include and exclude. If an object matches an include
regular expression and does not match an exclude regular expression, then it is copied.

There is no limit to the number of expressions that can be specified. An object's name can be (or
can be encoded to be) a valid regular expression itself. Therefore, you can list each object
individually.

Copy contains these three “subactions”: Create, Update, and Replace.

Create, Update, and Replace are implicit operations, that is, ACP decides which subaction will be
performed, based on the existence of the object in the target instance, as described below.

= Create the configuration object if it is not found by object key in the target instance. (The object
key is the APl Name if the Administrator node supports it, or the Name if the node does not
support APl Name; in the case of Users, the object key is User ID.)

* |f the source configuration object does not exist in the target instance by name, then the
configuration object is inserted into target instance.

= Update the configuration object if it is found by name in the target instance.

* |fa match on name is found in both the source and the target instances, then the target
configuration object is updated with the information on the source configuration object.

o Replace the configuration object if it is found by name in the target and its type in the source
instance is different.

* If the object's type differs in the target instance from the type in the source instance,
Replace finds the configuration object in the target instance and deletes the object, then
creates a new object in its place, thereby changing the type or meaning of an object.

* Replace is used when the object being propagated is “strongly typed”. Some Administrator
nodes are strongly typed, that is, in order to change the object’s type, it must be deleted
and re-created. An example of a strongly typed Administrator node is Lists. In order to
change a regular list to a cascading list, the list must be deleted and re-created.

Copy is fully detailed in Copy (<copy>) Section (on page 56).

v9.3.0.1 25

Agile Configuration Propagation

Rename Action (and section of Control File)

The Rename action directs ACP to rename an object's key (that is, the value of the object key for
that object). Renaming is now based on the API Name attribute, which has been added to most kinds
of objects in PLM.

The Control File uses the XML term <map> to rename objects whose key was changed in the
Source instance. Name maps have a Source name (key) — which is the “new” name because the
ACP user has changed it in the Source instance — and a Target name (key) — which is the “old”
name because it has not yet been changed in the Target instance. To make it more self-evident,
these tag names have been introduced:

d <source_apiname>
® <source_name>

® <source_userid>
® <target_apiname>
L4 <target_name>

® <target_userid>

@ A name map exists for the configuration object in the Control File.

If a configuration object is not found by its new name in the Target instance, and it is found by
its old name in the Target instance, then the Target configuration is updated with the new
name.

Note If an object cannot be renamed, an error is issued.
= The names specified in the map must match the object’s name exactly. Regular expressions
cannot be used here.

= There is no need to escape (or encode) regular expression special characters, for example, the
asterisk ("*").

o Rename is not a kind of "update". Rename can only give an object a new name.

= Rename is an explicit operation, that is, ACP must be directed to take the Rename action.

Rename is fully detailed in Rename (<rename=>) Section (on page 59).

Delete Action (and section of Control File)

The Delete action allows objects to be deleted in the Target.

As a protective measure, the object name specified must exactly match the name of the object-to-
be-deleted.

= A Delete directive exists for the configuration object in the Control File.
o Delete is an explicit operation, that is, ACP must be directed to take the Delete action.

Note If an object cannot be deleted, an error is issued.

= Not all configuration types support the Delete operation.

26 Agile Product Lifecycle Management

Chapter 4: ACP Product Information

= The configuration object is found by name in the Target instance. The names specified in the
map must match the object’'s name exactly. Regular expressions cannot be used here.

@ If the user has configured a configuration item to be deleted in the Control File, the
configuration item is deleted from the Target instance if it exists. If the configuration item does
not exist in the Target instance, an error is issued.

Delete is fully detailed in Delete (<delete>) Section (on page 61).

Subobject Maps (section of Control File)

The Subobject Maps section of the Control File is used to map the keys for subobjects. Subobject
mapping is now based on the APl Name attribute, which has been added to most kinds of
Administrator objects.

Some Administrator objects include a set of subordinate objects. Subordinate objects ("subobjects")
cannot exist by themselves, they exist only in relationship to a parent object. An example of an
object/subordinate object relationship is:

List (object) and
List Entry (subordinate object).

The point is that a specific List Entry object does not exist independently, it must belong to a List.
Subobject mapping can be applied to the following configuration types:
o Base Class
@ Class
@ Subclass
o List
@ Unit of Measure
o Workflow
@ My Assignments
Subobject mapping is fully detailed in Subobject Maps (on page 63).

Object mapping is introduced in Object Matching (Mapping) (on page 32).

Ignore References (section of Control File)

The Ignore References section of the Control File is for references to objects that will not be
propagated by the ACP actions.

"Ignore References" is not an ACP action. The usefulness of Ignore References is apparent when
"test Admin nodes" are created in a development environment (although these objects have a place
in a Development environment, they have no place in the Production environment).

The "ignorable" references are limited to Admin nodes where test objects are likely to be created:

o Users

v9.3.0.1 27

Agile Configuration Propagation

o User groups

o Roles

o Privileges

Regular expressions may be used to specify which objects should be ignored.

Ignore References is fully detailed in Ignore References (<ignore references>) Section (on page
62).

Name Compare and Deep Compare

ACP has always distinguished differences in names of Administrator objects between instances of
Agile. ACP could use the Copy operations to make actual changes to object names (in the Target,
based on what ACP perceived in the Source); ACP could also simply report the differences, through
the Compare function.

ACP still supports the comparison of configuration objects based on their name, which is now called
Name Compare.

ACP can now compare object attributes, both on the level of the Attribute names, and further on the
names of the Properties of the Attributes. This comparison is called Deep Compare. With Deep
Compare, each and every attribute of an object in the Source is compared with the ones in the
Target to reveal all differences in properties of the attributes.

The Compare function supports these data sources:
= in the Source instance: XML (the XML archive that is the first step to a potential propagation);
= in the Target instance: Agile (the PLM data that stands to be altered in a potential propagation).

Name Compare and Deep Compare are driven by the Control File against which they are run; only
objects and configuration types specified in the Control File are compared. All other objects and
configuration types are ignored regardless of whether they are present in the "XML archive"
(Source) or "Agile" (Target).

Sections of the Control File that Deep Compare pays attention to:

o Copy

@ Rename

@ Subobject Maps

@ Ignore References

Section of the Control File that Deep Compare does not pay attention to:
o Delete

A Deep Compare Report is generated through Bl Publisher, and the supporting output format is a
modified Microsoft Excel spreadsheet.

28 Agile Product Lifecycle Management

Chapter 4: ACP Product Information

Configuration Types

ACP propagates the data contents of Configuration Types, which are roughly the same as the
Administrator "nodes". Admin nodes are simply the named elements under Java Client’s Admin tab.
The Admin nodes are collectively called the “Admin tree.”

Not all propagation operations are supported by each Administrator node. ACP Configuration Types
(on page 67) shows the complete list of ACP-supported configuration types and the propagation

actions that are supported by each type. This list is meant to be complete for this specific release

only.

Important An ACP user must have the appropriate Administrator privilege (privilege mask) to a

given Administrator node for that node to be responsive to ACP's operations.

Non-Propagating Administrator Objects

The following Administrator objects (listed in alphabetical order) cannot be propagated.

Non-propagating
Administrator objects

Where found (Java Client
unless noted)

Comment

Attachments on User and User
Group objects

User Settings > Users, User
Groups

Cache Health Monitor

Web Client > Administration

Web Client—only Admin data and
Monitors are not propagated.

Character Sets that are "out of Data Settings

the box"

Currency Exchange Rates System Settings

Deleted Users User Settings ACP must be explicitly directed to delete
users.

Deleted User Groups User Settings ACP must be explicitly directed to delete
users.

Event Handler Monitor System Settings > Event Monitors are not propagated.

Management
Example Criteria, Example Examples "Read only" out-of-the-box data

Privileges, Example Roles

Languages on User and User

Server Settings > Preferences

Group objects tab

LDAP Server Settings
Licenses Server Settings
Lists with duplicate list entry Data Settings

names

Logging Configuration

Web Client > Administration

Web Client—only Admin data and

v9.3.0.1

29

Agile Configuration Propagation

Non-propagating Where found (Java Client Comment
Administrator objects unless noted)
Monitors are not propagated.
Personal User Groups (created by users, stored as Admin
objects)
Relationships on User and User Settings > Users, User
User Group objects Groups
Reports Classes > Reports base class
Report Templates Web Client > Administration
Searches Searches admin tab Global and Personal searches are not
propagated.
Sites Classes > Sites base class
Task Monitor Server Settings Monitors are not propagated.
Unit Of Measure families with System Settings
duplicate UOMs
User Monitor User Settings Monitors are not propagated.
Visual Themes Web Client > Administration Web Client—only Admin data is not
propagated.

ACP only propagates Administrator data from Java Client, and it does not distinguish Admin data
that happened to be generated from Web Client. Therefore, users and user groups that are
generated from Web Client can be propagated.

Note Dashboard Configuration in Web Client corresponds to Dashboard Management in Java Client.

Type Filtering on Configuration Types

Note The word "type" in the new feature "Type Filter" refers to filtering by Administrator nodes
sub[ordinate]-types. It is pertinent to some Admin nodes, not all, as elaborated below. Do
not confuse "type filtering" with either "configuration types" in ACP nor the "object types"
in PLM.

The Type Filtering feature is introduced to permit more flexible object selection. For example, in the
table below, the configuration type "Privilege Mask" can be filtered by "Privilege". Therefore, you
could specify that ACP look at only those privilege masks that are based on the Create privilege (in
an instance of Agile PLM).

The enhancement is that you are no longer constrained to filtering by name alone.

The Type Filtering tag is <type name="xx"/>, where xx is the specific filter (in the previous
example: Create).

In this table, where the possible values are too numerous to list, you can look at the appropriate
node in Administrator to know exactly what the choice of specific Filters are.

30 Agile Product Lifecycle Management

Chapter 4: ACP Product Information

Configuration Type Type Filter Possible Values

(ACS) Destination Protocol Agile, File, FTP, HTTP, HTTPS, JMS

(ACS) Event (ACS) Event Type Scheduled, Workflow

AutoNumber Type Standard, Custom

Class Base Class any base class, for example: ltems, Changes, Customers

Subclass Base Class or Class any base class (see above) or class, e.g., Parts, Change
Orders, customers

Criteria Object Type any base class, class, or subclass

(Event Mgt.) Event (EM) Event Type see Event Management > Event Types

Event Handler Event Handler Type Java PX, Script PX

Event Subscriber (EM) Event any Event defined in Event Management > Events

Privilege Mask Privilege see User Settings > Privileges

Process Extension (PX) Type Internal Custom Action, URL

User Group Subclass any User Group subclass, e.g., User Group

Workflow Object Type = Changes, Declarations, File Folders, Packages, PSRs,

Routable Base Class Projects, QCRs, ATOs
Notification Object Type
Examples

This example filters all ACS Destinations where the protocol is HTTP.

<acs_destination>
<include>
<type name="HTTP"/>
</include>

</acs_destination>

This example filters: all subclasses in the ltems base class; all subclasses in the Change Orders
class; and all subclasses that belong to the Suppliers class with the word "Manufacturer” in the
name.

<subclass>

<include>
<type name="Items"/>
<type name="Change Orders"/>
<type name="suppliers">

<pattern>.*Manufacturer.*</pattern>

</type>

</include>

</subclass>

v9.3.0.1 31

Agile Configuration Propagation

Object Matching (Mapping)

ACP now uses a public key, APl Name, where available. ACP93 has reduced the likelihood that an
object's key will change by using the more static key APl Name.

ACP recognizes User ID for users.

ACP still uses Name as the key in a few cases. "Configuration Types and Match Fields" (in Appx. A)
lists the configuration types and whether the match field is the external, changeable name of the
object or the internal, unchangeable, identification number.

Limitations of Mapping

= ACP uses an object's name for matching where the customer can create or delete objects of
the Administrator node.

@ ACP uses an object's internal ID for matching where the customer may not create or delete
objects of the Administrator node.

@ If an object is renamed and ACP uses the name for matching objects of that Administrator
node, then a mapping must be specified in the control file for ACP to take the correct action.

= ACP matches subobjects by name.
= Subobject renames require a name map in the control file.
= Admin objects do not have a public key (see definition of public key in Object Mapping above)

o Flex Attributes cannot be renamed using ACP.

Processing Order in ACP

The following sets of Processing Order Rules stem from these two facts about ACP:
@ ACP controls the processing order.

@ ACP may process an Administrator node in multiple passes. These passes are listed
separately in the Log file.

ACP controls the order in which Administrator nodes are processed. This order is dictated by the
dependencies between each of the Administrator nodes. ACP performs "Deletes" first, then
"Renames", then "Copies". Deletes are processed in reverse dependency order. Renames and
Copies are processed in forward dependency order.

Due to some dependencies between Administrator objects, ACP may have to process the
configuration type in multiple passes when Copying.

For example, in PLM, Users can belong to User Groups, and User Groups are populated with
Users. In order for ACP to process the objects in these two configuration types, it first creates Users
in the Target system, then it creates User Groups are created. Only when all "new" users and user
groups have been created in the Target does ACP make the necessary associations.

32 Agile Product Lifecycle Management

Chapter 4: ACP Product Information

Processing Order Rules

ACP defines the processing order of the configuration types based on application rules. The order is
not influenced by the order the configuration types appear in the control file.

Copy Rules

u]

u]

m]

By default, all configuration objects for a configured configuration type will be copied.
Copy selects objects by name; users are selected by UserID.
Include patterns match object names using Java regular expression rules.

Java regular expressions have special characters that may need to be encoded. Direct them
where to go for the list of special characters.

XML special characters need to be encoded.

Zero or more include patterns may be specified. There is no limit to the number of patterns you
may specify.

Exclude patterns match using Java regular expression rules.

One or more exclude patterns may be specified. There is no limit to the number of patterns you
may specify.

Rename Rules

Rename selects objects by object key; users are selected by UserlD.
Zero or more key mappings may be specified.

Name mappings use an exact match for both the old and new keys.
Regular expressions are not allowed.

XML special characters must be encoded.

Regular expression special characters do not need to be encoded.

Delete Rules

By default, no configuration objects for a configured configuration type will be deleted.
Delete by object name: Delete names requires an exact match to be deleted.

Regular expressions are not allowed.

XML special characters must be encoded.

Regular expression special characters do not need to be encoded.

Configuration History

ACP does not propagate History information. However, since ACP uses the PLM application to

v9.3.0.1 33

Agile Configuration Propagation

propagate, a History record is created as the data is propagated. Since History items always apply
to the specific user who created or modified Admin objects, it is helpful to assign propagation roles
to Agile users, which simplifies tracking how the data was modified in the target instance.

Internationalization

ACP can be run once to propagate all language versions of the configuration data. This is true
regardless of the language preference of the administrator who connects to the Agile instance
during the ACP run. The target instance must have all of the languages enabled that are enabled in
the source instance.

Supported languages are:

English

French

German

Japanese
Simplified Chinese
Traditional Chinese
Russian

Korean

34

Agile Product Lifecycle Management

Chapter 5
User Requirements

This chapter includes the following:

= Standard PLM Privileges that can ACCESS ACPcieiciiecreesee sttt 35
= Tailored ROIES fOr thE ACP USETcueiieeriieiscer ettt sttt 35
5 Privileges fOr thE ACP USETcuiuiiieiiriciriieieis ettt s b 35

This chapter looks at roles and privileges that give Agile users access to ACP, at the discretion of
the administrator. Agile Configuration Propagation observes all business rules around Agile PLM’s
roles and privileges. For more information about configuring Agile PLM roles and privileges, please
see the chapters “Roles” and “Privileges and Privilege Masks” in Oracle | Agile PLM Administrator
Guide.

Standard PLM Privileges that can Access ACP

o Administrator privilege mask — permits full access to ACP functionality, as well as full access to
PLM system(s)

—OR-
@ Admin Access for User Admin privilege mask — able to propagate only Users and User Groups

Remember, an ACP user must have the appropriate Administrator privilege (that is, the AppliedTo
property in a user's Admin privilege is properly configured) to a given Administrator node for that
node to be responsive to ACP's operations when an Admin user works in ACP.

Tailored Roles for the ACP User

Two specialized roles have been provided to permit use of ACP without permitting full Administrator
access to the PLM system(s):

o (Propagation) Administrator role — contains the privileges that permit propagation of Administrator
nodes

= (Propagation) User Administrator role — contains the privileges that permit propagation of Users
and User Groups only.

Agile users who have been assigned either of these roles can log in to PLM with the username
“propagation”.

Privileges for the ACP User

The ACP user must have appropriate privilege masks to propagate configuration data from a source
instance to a target instance. The privilege masks are based on the following privileges to specified
object types in PLM:

v9.3.0.1 35

Agile Configuration Propagation

® Read privilege — to the objects to be propagated from a source

* Discover, Read, Create, and Modify privileges — for all User and User Group attributes at a
target instance

* Create and Modify privileges — to the objects to be created or modified at a target instance.

The AppliedTo property of all Administrator, Read, and Modify privilege masks must be correctly
defined, as it allows the user to see specified Administrator nodes. The AppliedTo property is
described in the chapter “Privileges and Privilege Masks” in Oracle | Agile PLM Administrator
Guide.

36 Agile Product Lifecycle Management

Chapter 6
Installing ACP

This chapter includes the following:

= RequUIred INFOMMALONcvviiiiiececs ettt bbb bbbt 37
B POIBQUISIIES ...ttt e 38
B WiINAOWS INSTAIATON ..ottt 38
= UNIX (LINUX) INSEAHBLON ... 40
5 POSHNSIANAON TASKS ...c.vieceeree ettt 41

Required Information

To install ACP, you will need to know what operating system, application server, and version of
Agile PLM are being used.

Operating System
This is the operating system of the machine on which you intend to install ACP. The following
operating systems work with ACP:

@ Windows family

o UNIX family (for example: Solaris, Linux)

Agile PLM Version

The versions of ACP and Agile PLM that will work together must be the same release. For instance,
ACP9301 works with Agile PLM 9.3.0.1, but it does not work with, for example, Agile PLM 9.3.0.0.

Application Server

The ACP Installer installs a specific set of files depending on the application server with which you
connect to PLM. For ACP to communicate with Agile PLM, ACP and Agile PLM must be running the
same application server. ACP works with the following application servers:

= Oracle Application Server (OAS)
@ WebLogic Application Server (WLS)

Installation Directory

The installation directory is the directory (or folder) in which you want to install ACP. There are no
restrictions to where you may install ACP; however, the installation directory you choose should not
pre-exist. If it does exist, you will be cautioned and asked if you want to proceed. If you do proceed,

v9.3.0.1 37

Agile Configuration Propagation

the existing directory will be purged.

The ACP Installer offers a default directory to install to, but you should be clear before installing
exactly what directory is in line with your site installation policy.

Work Directory

The work directory is a directory where all project folders will be created. This is your directory to
manage any way you see fit. The ACP Installer prompts you for your work directory so that it can
place a sample ACP project to get you started.

Prerequisites

Downloading Java Runtime Environment and the ACP Installer are prerequisites for installing ACP.
Java Runtime Environment

ACP requires Java’s JRE 1.5.x to install and run ACP. You must download and install Java yourself.

ACP Installer

You can download a copy of the ACP Installer from the Oracle Support website:
http://www.oracle.com/agile/support.html. Be sure to obtain the version that corresponds to the
version of Agile PLM that you are using: please verify your version of PLM before selecting the
version of ACP Installer.

Windows Installation
To install ACP on a Windows-based system, follow the steps below.

Extract

The ACP Installer is contained in a standard ZIP file. You can unzip the files to a directory of your
choice.

Run Installer

It takes two minutes or less to set up and install ACP.

Open Command Window

The ACP Installer is an (Apache) Ant-based installer. It must be run from a command window.
Go to ACP Installer Directory

Change the directory to the directory in which you unzipped the ACP Installer.

38 Agile Product Lifecycle Management

http://www.oracle.com/agile/support.html

Chapter 6: Installing ACP

Run the Installer Script

1. Set JAVA_HOME

In order to run the ACP Installer, the environment variable JAVA_HOME must be set; it should be
set to where you installed Java JRE 1.5.

SET JAVA_HOME=<Java JRE 1.5 Directory>

2. Run Installation Script

Run the specific installation script to install ACP on Windows systems:
install_win

When the script starts, the Oracle/Agile splash screen is presented, which indicates progress of the
installer as it is working.

3. Answer Prompts

The installer prompts you for required information. The prompts have default responses indicated
by brackets ([]). Press the Enter key to accept the default response.

a. Areyou sure you want to install this version of ACP? ([y], n)

Just above this prompt, the ACP Installer displays the version of ACP that will be installed.
Please verify that this is the version you intended to install. If it is not, you must respond “n”
to this prompt.

b. Select App Server Platform to use? ([oas], wls)

The application server platform is based on the application server used by the Agile PLM
instance to which ACP will connect. You can enter only an abbreviation to designate the
application server:

= Oracle App Server: oas
= WebLogic App Server: wis
c. Enterdirectory to install ACP? [C:\Agile\ACP<####>]

This is the directory to which the ACP binaries and other files will be installed. The ACP
Installer tries to provide a reasonable default location for you to install ACP, but you can
use another location.

“<####>" represents the version of Agile PLM with which this version of ACP works.

d. Enter the work directory to use with ACP? [C:\Agile\ACPWork<####>]

This is the directory where you will create ACP project directories; ACP is run from a
project directory. This directory can be relative to the installation directory you entered, or it
can be a completely separate directory tree. “<###>" represents the version of Agile PLM
with which this version of ACP works.

e. The chosen ACP install directory already exists. Do you want to continue? (y, [n])

This prompt appears only when the install directory you specify already exists. This prompt
cautions you about potentially installing over another application or overwriting an

[T

inappropriate directory. If you wish to continue, you must enter “y” as a response.

v9.3.0.1 39

Agile Configuration Propagation

UNIX (Linux) Installation

To install ACP on a UNIX- or Linux-based system, follow the steps below.

Extract

The ACP Installer is contained in a standard ZIP file. You can unzip the files to a directory of your
choice. When unzipping the ZIP file, use the -a option to make sure text files are extracted properly.

unzip -a acp_install.zip
Make Executable

For UNIX and Linux users, the ACP Installer must be prepared for execution. This is simply a matter
of making the appropriate install script executable. The script exists in the directory to which you
extracted the ACP Installer ZIP file.

chmod u+x install_ unix
Run Installer

It takes two minutes or less to set up and install ACP.

Open Terminal Window

The ACP Installer is an (Apache) Ant-based installer. It must be run from a terminal window.
Go to ACP Installer Directory

Change the directory to the directory in which you unzipped the ACP Installer.

Run the Installer Script

1. Set JAVA_HOME

In order to run the ACP Installer, the environment variable JAVA_HOME must be set; it should be
set to where you installed Java JRE 1.5.

JAVA_HOME=<Java JRE 1.5 Directory>

2. Run Script

Run the specific installation script to install ACP on UNIX/Linux systems:

install _unix

When the script starts, the Oracle/Agile splash screen is presented if X11 is running on your
system. This indicates progress of the installer as it is working.

3. Answer Prompts

The installer will prompt you for the required information. The prompts have default responses

40 Agile Product Lifecycle Management

Chapter 6: Installing ACP

indicated by brackets ([]). Press the Enter key to accept the default response.

a.

Are you sure you want to install this version of ACP? ([y], n)

Just above this prompt, the ACP Installer displays the version of ACP that will be installed.
Please verify that this is the version you intended to install. If it is not, you must respond “n”
to this prompt.

Select App Server Platform to use? ([oas], wls)

The application server platform is based on the application server used by the Agile PLM
instance to which ACP will connect. You can enter only an abbreviation to designate the
application server:

= QOracle App Server: oas
= WebLogic App Server: wls
Enter directory to install ACP? [/opt/Agile/ACP<#it#>]

This is the directory to which the ACP binaries and other files will be installed. The ACP
Installer tries to provide a reasonable default location for you to install ACP, but you can
use another location.

“<####>" represents the version of Agile PLM with which this version of ACP works.

Enter the work directory to use with ACP? [/<Home>/<user>/ACPWork<###>]

This is the directory where you will create ACP project directories; ACP is run from a
project directory. This directory can be relative to the installation directory you entered, or it
can be a completely separate directory tree. “<###>" represents the version of Agile PLM
with which this version of ACP works.

The chosen ACP install directory already exists. Do you want to continue? (y, [n])

This prompt appears only when the install directory you specify already exists. This prompt
cautions you about potentially installing over another application or overwriting an

inappropriate directory. If you wish to continue, you must enter “y” as a response.

Postinstallation Tasks

ACP-Installed Directories

You might require multiple instances of ACP to work with multiple versions of Agile PLM, for
example, if you are beginning the Upgrade process to a new PLM release but must maintain
updates in the earlier, live version of PLM.

\Agile PLM <-where Agile PLM is installed
\ACP <-where ACP client is installed
\ < version > <- level for multiple instances of ACP
\bin <- standard installed directories (see below)
\classes
\lib
(Etc.)

v9.3.0.1

41

Agile Configuration Propagation

ACP Client-Installed Directory Structure

The following directories are owned by the installation. Do not modify the files in these directories, as
they are subject to change without notice.

m]

m]

u]

u]

ant — contains a subset of the Ant utility. ACP uses Apache Ant for project management.
bin - contains scripts to run the ACP utility programs

classes — contains text resources that may be localized (that is, translated) or customized
lib - contains the set of libraries that are required for the ACP utility.

schema — contains the schema file for the ACP Control File

schema / docs — contains the online documentation for the ACP Control File,
acp_control_file.html

templates - contain template project files and property files

ACP Work Directory Structure

It is a best practice that you organize your configuration needs into "projects". Each project is
maintained in a separate project folders. Project folders are contained in the work directory
specified when ACP is installed.

This topic is the starting point for the next chapter, “Running ACP.”

42

Agile Product Lifecycle Management

Chapter 7
Running ACP

This chapter includes the following:

ACP PrOJECES ..vuvuivviiicti ettt sttt s bbb s bbb bbbttt Rttt et
Creating Projects
ACP PrOPEIHES ...ttt bbb
ACP Control File
ACP SCrIPtS ...ocvvecveeeee e,

ACP EXIt COUBS ..ottt
ACP Log FileS......oeveirerrriciecercee e,

SUMMEIY .ottt et es e s e s b s8R ettt

This chapter discusses the operating components in ACP, which provides a general understanding
of how to run ACP. Agile Configuration Propagation consists of the following components: Projects,
Properties, Control File, Scripts, Return Codes, and Log Files. Most of these components are
described in further detail in succeeding chapters or appendices.

ACP Projects

Important In order to prevent the accidental deletion of project directories, the work directory
should be kept separate from the install directory. In any case, ACP Project directories
should not be under the installed ACP path.

It is a best practice that you organize your configuration needs into independent configuration
projects. Each project is maintained in separate project folders. Project folders are contained in the
work directory that is specified when ACP is installed.

A project is defined by its properties file and control file:

o The properties file project .properties provides the information that ACP needs for
interacting with the environment;

o The control file config.xml tells ACP what objects to process.

ACP Project Directories

To help you get started, the ACP installer creates a project named “sample” for you. You can use
this project or create other projects when needed.

o sample — a sample project directory created for you by the installer.

o <project> or <ACP projects>, for example — a project directory created by you; this directory does
not exist until you create it. There may be multiple project directories.

v9.3.0.1 43

Agile Configuration Propagation

Sample Project Directory

The work directory contains project folders. Projects are defined by the control file stored in the
project directory.

For example, you might create projects for List management, for Roles and Privileges, for release-
based Agile Classes, and for each new feature that you want to deploy:

\Agile PLM <-where Agile PLM is installed

\ACP <-where ACP client is installed (ACP Project directories should not be
under the installed ACP path)

. <- “work” directory, where ACP Projects are organized
\ACP Projects

\<project_9301> <- a directory that collects ACP projects oriented to PLM Release 9.3.0.1

\Roles_Privileges <- control file used to propagate Admin roles and privileges

\Lists <- control file used to propagate Admin lists

\9301_Classes <- control file used to propagate Admin classes in PLM Rel. 9.3.0.1
\9301_Subclasses <- control file used to propagate Admin subclasses in PLM Rel. 9.3.0.1
\New Feature_ 01 <- control file used to propagate a specific new feature

\New Feature_02 <- control file used to propagate a specific new feature

If ACP projects are placed in a work folder, the work directory should not be the same or
contained in the Install directory.

As you can see, you can have as many project directories as you like, and you can name them
anything you like.

Creating Projects

There are two ways in which to create an ACP project:

o You can copy an existing project; or,

= You can use the create_project script provided by ACP.

Existing Project

This method allows you to start from an existing project. Project folders must be created in the work
directory specified when installing ACP.

1. Identify the existing project folder you wish to copy.

2. Create a copy of the project folder.

Use your favorite method for copying folders:
* Windows: Copy/Paste

* DOS: copy command

* Unix: cp command.

44 Agile Product Lifecycle Management

Chapter 7: Running ACP

3. Rename the copied folder.
Recommendation: Indicate the purpose of the project in the name you choose.
4. Delete old project files.
Since you are copying a project, you will be copying files that do not apply to the new project.
Here is a list of files that you should consider deleting from the new project folder:
* Log Files (*.log, *.err)
®* ACP archives (*.agl)
® Other files you may have created

The new project should only have the launch script (acp . bat), the project properties file
(project.properties) and the control file (config.xml).

New Project

This method allows you to start with a clean project. Project folders should be created in the work
directory specified when installing ACP.

1. Choose a name for the new project folder. The folder name cannot already exist.
2. Open a terminal window (Windows: DOS window; Unix: shell)
3. Change directory to the work directory specified when ACP was installed.

Here are examples based on the default work directories provided by the ACP Installer.
* Windows: cd C:\Agile\ACPWork93

® Unix: cd /<user home>/agile/acpwork93

Of course you will tailor any numbered directory folders to match the specific PLM version, for
example, "93", "9301", and so forth.

4. Run the ACP create project script.
acp create_project <project_name>

ACP Properties

ACP uses properties to understand how to interact with the environment it is running in. ACP
properties can be set by the program, on the command-line, in the Project Properties file, as well as
common properties files. ACP properties are described in greater detail in the ACP_Properties
appendix (on page 83). For now, you should understand how to configure connection information
for the Agile PLM instances you wish to connect to.

New projects are created with a project .properties file. This property file contains properties
specific to the project. The sample project.properties file has a preconfigured list of Agile
PLM instances (Golden Config, Development, Quality Analysis, Stage, Training, and Production)
listed in it. Each instance is assigned a nickname. For instance, the production instance might be
"prod".

Here is an example of a connection that is configured in the project.properties file. For
example purposes, we will use Acme as the name of the customer. Configure all of your
connections in a similar manner.

v9.3.0.1 45

Agile Configuration Propagation

prod.name = Acme Production

prod.url = http://www.acme.com:7777/Aqile
prod.username = propagation
prod.password = 4DBO8S8E9B1EBFAE
prod.password.mode = encrypted

prod.xml = export_prod.agl

In this example, "prod" is the nickname for the connection. You will specify the nickname as a
parameter to the ACP commands. Each of the properties for this particular connection must be
prefixed by "prod.".

Property Name Property Description

name A friendly name for the connection. The application does not actually use this property. You
can use this property however you would like.

url The URL to use for accessing the Agile PLM instance. Essentially, this is the URL used to
access the Agile PLM Web Client up through "/Agile".

username The name of the administrator user to connect to the Agile PLM instance with.

password The password for the administrator user used to connect to the Agile PLM instance.

password.mode Indicates the form of the password. Choices are (encrypted, cleartext, or prompt).

xml The name of the ACP archive created when exporting data from this Agile PLM instance.

Refer to ACP Properties (on page 83) for more details.

ACP Control File

ACP uses the control file config.xml to tell it what to propagate. The sample control file is
configured to select all objects for all configuration types except for users. You can leave the control
file configured as is or you can change the configured settings.

The control file is divided into five sections:
1. <copy> The Copy section tells ACP which objects should be created or updated.

2. <rename> The Rename section tells ACP which objects whose keys need to be renamed in
the target.

3. <delete> The Delete section tells ACP which objects should be deleted from the target.

4. <ignore_references> The Ignore References section tells ACP which object references
can be ignored if they cannot be resolved in the target instance.

5. <subobject_maps> The Subobject Maps section is used to help ACP map subobject keys
between the source and target.

See Configuring the ACP Control File (on page 49) for detailed information on how to configure the
control file.

Also contained in the control file are Attributes that influence the business logic that ACP uses with
regard to certain configuration types. These are also covered in the next chapter, in Business Loagic
Attributes in the Control File (on page 52).

46 Agile Product Lifecycle Management

http://www.acme.com:7777/Agile

Chapter 7: Running ACP

ACP Scripts

ACP is run through a set of scripts. The scripts are initiated from a command line in either a DOS
command window or a Unix shell. The ACP scripts are installed to the bin directory. When running
the ACP scripts, the folder for the project you are currently working with needs to be your current
working directory. Depending on the script you are running, you will need to pass in the nickname
for the connection(s) the ACP script will be interacting with.

For convenience, a script launcher was installed to the project directory. You can use this script to
launch ACP script you want to run.
1. Change directory to the project folder for the project you are working with.
* Windows: cd /d D:\Agile\AcpWork
* Unix: cd /export/home/joeuser/agile/acpwork
2. Setthe ACP_JAVA HOME environment variable to where the JRE 1.5 has been installed.
®* Windows: Set ACP_JAVA HOME = c:\jre1.5_0_15
* Unix: ACP_JAVA HOME = /usr/lib/jre1.5 0 _15

3. Launch the desired script. The examples direct ACP to export the Dev instance and to import
the Dev instance to the Prod instance:

® acp export dev
® acp import dev prod

Refer to ACP Scripts (on page 89) for a complete list of ACP commands and their parameters.

ACP Exit Codes

ACP uses a command line interface to execute. This allows ACP to be run from background scripts
that you develop. Each ACP script runs a specific ACP program. An ACP program will return a code
when it exits. This "exit code" indicates whether the program completed successfully, successfully
but with warnings, or with errors. Your background scripts can interrogate the exit code and take the
appropriate action based on the code returned.

Refer to ACP_Exit Codes (on page 97) for a list of the program return codes and corresponding text.

ACP Log Files

In addition to the data that is propagated to a target instance or exported to an ACP archive, ACP
creates log files which describe what ACP did.

The process log tells you what you asked ACP to do, what was processed, and the result for each
object processed.

The error log provides detailed information about warnings and errors encountered while
processing.

The verbose log provides detailed information about information changed in the target instance.

v9.3.0.1 47

Agile Configuration Propagation

Refer to ACP_Program Logs (on page 99) for closer inspections (“anatomy”) and a sample of several
of the log files.

Summary

ACP is driven from a command-line interface. This allows ACP to be integrated with the
configuration management process you are currently using. It does not lend itself to ad-hoc
configuration changes.

Managing your configuration through projects will allow you to reuse and perform multiple
configuration changes simultaneously.

You interact with ACP through a set of scripts that are installed with ACP.

o Use ACP Properties to tell ACP how to interact with your environment.
o Use the Control File to tell ACP what objects you want propagated.
Review the work ACP has performed through the log files produced by ACP.

Interrogate the return codes provided by ACP to complete the integration with your configuration
management process.

48 Agile Product Lifecycle Management

Chapter 8
Configuring the ACP Control File

This chapter includes the following:

Y YO0 e 7o o T = 49
B XML FOMMAL ...ttt ettt ettt se et et et s ae st st et e st et et st e st seete et et e e et e et et et etesnesene st ete e eraneaes 49
= Business Logic Attributes in the Control Fle ... e 52
B CONMIOL FlE SEOUONS..... ..ottt ettt et et et sttt e et et st et e se st et s b e e et e st st et seeseseessse st e e stannses 56

This chapter is a conceptual overview of the contents of the control file and how its contents are
interpreted by ACP. A brief section on XML formatting is included as a baseline of XML syntax
when you modify the control file. Each of the main sections of the control file are discussed in this
chapter.

ACP Control File

This chapter is a conceptual overview of the contents of the Control File and how it is modified so
ACP does what you want it to. This final chapter of the manual is supported by the Appendixes,
notably App. A about the ACP Configuration Types and App. B, "Java Regular Expressions."

The ACP Control File is how you tell ACP what to propagate. ACP knows how to propagate objects
and which order objects need to be propagated in, but it does not know what to propagate. You
must configure the Control File to communicate to ACP what you would like it to do.

By default, the Control File is named config.xml and is located in the project directory. This
sample Control File doubles as "online documentation” in that it contains the complete syntax of the
tag names, attribute names, and attribute values used by ACP in propagation operations.

The name and location of the Control File can be changed by setting the control. filename
property in the Project Properties file (project.properties).

The control file (config.xml) is an XML file whose syntax must adhere to the control file schema,
acp_control_file.xsd, located in the <ACP Install Dir>/schema directory. The Control File
itself is a valuable source of information: it presents the complete syntax of ACP, listing all the
configuration types, business logic attributes, regular expressions, and examples of instructions to
ACP, the actions that it will take.

A graphical representation of the schema can also be found in the install directory. The graphical
representation is called <ACP Install Dir>/schema/docs/acp_control_file.html. This file
can be viewed through any Internet browser.

XML Format

ACP's control file uses basic XML constructs. Please familiarize yourself with these basic constructs
before trying to make changes to the control file.

v9.3.0.1 49

Agile Configuration Propagation

Element

XML elements have content (that is, data). This content can be:

o empty,

= simple content (such as text),

@ element content, or

o mixed content.

Elements may also have attributes. Attributes are defined as part of the start tag.
All elements have a start tag and an end tag.

The element's content is everything specified from (and including) the element's start tag to (and
including) the element's end tag.

The name of the element is defined by its start tag. The start tag and end tag must have matching
names. (XML tag names are case-sensitive.)

Here are some examples of XML elements.
Empty Element

An empty element is an element with nothing between its start and end tags. Since there is nothing
between the start and end tags, there are actually two methods for expressing the element.

o Longhand Example: <middle_name></middle_name>

o Shorthand Example: <middle_name/>
Simple-Content Element

An element with simple content is an element with only text between the start and end tags.
Carriage returns and tabs that appear between the start and end tag are considered to be part of
the text.

o Example: <last_name>Smith</last_name>

o Example with carriage returns:

<last_name>
Smith
</last_name>

Element-Content Element

An element with element content is an element with only nested elements between the start and
end tags.

o Example:
<name>
<first_name>Jane</first_name>
<last_name>Doe</last_name>

50 Agile Product Lifecycle Management

Chapter 8: Configuring the ACP Control File

</name>

Mixed-Content Element

An element with mixed content has both simple content and element content.

o Example:

<chapter>XML Syntax
<para>Elements must have a closing tag</para>
<para>Elements must be properly nested</para>
</chapter>

Element with Attributes

An element with attributes has attributes defined in the start tag. An element can have any number
of attributes. The format of an attribute is <attribute name>="<attribute value>".

o Example: <phone type="work">1-888-555-1212</phone>

Root Element or Document Element

All XML documents must have a root element; also known as the document element. The < agile >
element is the root element for the ACP control file.

Element Tags

Element start and end tags are case sensitive and must match each other exactly. All element tags
in the ACP control file are lowercase.

Element Attributes

XML elements may have attributes which appear as name/value pairs (<name>="<value>"). The
value must be surrounded by quotes.

Comments in XML

XML allows for comments. You can add comments to the control file that can help during re-use.
The begin comment delimiter is “<!--".
The end comment delimiter is “-->".

Comments may not be nested. In fact, comments may not contain two consecutive dashes (--)
within the text.

@ Example:<!-- this is a comment -->

v9.3.0.1 51

Agile Configuration Propagation

Special Characters

XML uses “<* and “>” to delimit element tags. It also uses quotes (*") to delimit attribute values. For
this reason, these characters cannot be used within the data (text) portion of the XML. These
characters must be specially encoded to appear as data. The ampersand (&) is used to encode the
data. Therefore, the ampersand (&) is also considered a special character. All encodings begin with
an ampersand (&) and must end with a semicolon (;).

Here are the proper encodings for the special XML characters:

Characters Encoding
& &
< <
> >
“ "

Business Logic Attributes in the Control File

In addition to being able to select which objects by configuration type, you can also influence the
business logic that ACP uses with regard to configuration types.

The amount of influence on business logic varies by configuration type. For detailed information on
attribute names and their allowable values, refer to ACP Configuration Types (on page 67).

Objects per File

<objects_per_file> attribute is available to all configuration types.

When exporting objects, ACP creates separate XML files for each configuration type exported in the
ACP XML archive.

In addition, ACP can limit the number of objects written to an XML file. Once the limit is reached,
ACP starts writing to a new XML file for that configuration type.

XML files for a configuration type are sequenced as 001, 002, 003, and so forth.
By default, ACP writes up to 1000 objects to an XML file for each configuration type.

Attribute Attribute tag What it does Values (default
name value
is in Bold font)
Objects Per File config_type The number of objects ACP writes to a 1000
O}?J' ects_per_ single XML file creating a new XML file
file for the configuration type.

52 Agile Product Lifecycle Management

Chapter 8: Configuring the ACP Control File

File Prefix

<file_prefix> attribute is available to all configuration types.

When exporting objects, ACP creates separate XML files for each configuration type exported in the
ACP XML archive.

Since ACP may have to create multiple XML files per configuration type, a file prefix must be used
for each file. This is the prefix before the sequence number for the file. ACP assigns a reasonable
prefix to easily identify the XML files that are exported for each configuration type.

Attribute Attribute tag What it does Values (default value
name is in Bold font)
File Prefix conf ig_type The prefix to use when naming the Default (if not specified):
file_ XML files generated by export. configuration type—specific
prefix

Criteria Force Update

<criteria_force_update> attribute is available to the Criteria configuration type.

Typically, criteria should not be updated once in use as this may create an undesirable change to
business behavior. Java Client presents a dialog when an in-use criteria is about to be changed and
requires you to confirm this change. Similarly, ACP allows you to force in-use criteria to be updated.
This setting is applied to all criteria processed.

Attribute Attribute tag What it does Values (default value
name is in Bold font)
Criteria Force criteria Allows you to decide whether No. ACP does not allow an in-use

Update force_update in-use criteria can be updated. criteria to be updated.

Autonumber Force Update

<auto_number force_update> attribute is available to the AutoNumber configuration type.

This attribute is used to control accidental updating of your company's autonumber sequences.
When end-users unintentionally "upset" the autonumber sequence, and if the administrator attempts
to revert the numbering, PLM may be subject to errors.

As understood by ACP, autonumbers in PLM now have two sets of properties.
o "First set" of properties are updated on a regular propagation — Name, Description, APl Name

o "Second set" of properties can be controlled by Autonumber Force Update — Prefix, Suffix,

v9.3.0.1 53

Agile Configuration Propagation

Character Set, Number of Characters, Starting Number

When the "Yes" tag is used, both first and second sets of properties are updated. When the "No"
tag is used, only the first set of properties is updated. The default is set to No.

Attribute Attribute tag What it does Values (default value
name is in Bold font)
AutoNumber auto_number Controls accidental updating of
Force Update force_update autonumber sequences.

Force Delete List Entry

<force_delete_list_entry> attribute is available to the List configuration type.

This parameter addresses the problem of deletion of list entries that belong to lists that are in use
by the PLM system. Although you cannot delete a list entry that is part of the configuration (an
attribute default value), you can disable the value. If the <force_delete_list_entry> attribute
is set to No (the default), then the list entry is disabled instead of deleted. The value remains listed

as the default value.

The system issues warnings when “force” behavior is invoked. For instance, the user is prompted
whether to wipe out references to the entry being deleted if not used as a default value. The prompt
that the user sees when deleting a list entry is shown no matter whether the list is in use. If a user
creates a list, and immediately adds some values, and then tries to delete one of the values, the

confirmation prompt is displayed.

Attribute Attribute tag What it does Values (default value
name is in Bold font)
Force Delete force delete_ Determines whether a list entry | no, false, 0 all mean No = list entry
List Entry list_entry is to be deleted or disabled is disabled, not deleted.
yes, true, 1 all mean Yes = list entry
is deleted, if possible.

New User Password

<new_user_password> attribute is available to the User configuration type.

ACP does not propagate user passwords; it would be a "security hole" if it did. Since passwords
cannot be propagated, ACP must assign a password when creating new users. By default, ACP
assigns the password "agile" to all users that it creates. This password must meet the Account
Policy settings in Administrator. The <new user password> attribute allows you to choose the

password that ACP assigns to new users.

For security purposes, the <new user password> must be encrypted. You can use the encryptpwd

54 Agile Product Lifecycle Management

Chapter 8: Configuring the ACP Control File

script to get the encrypted version of the password you would like to use; see Password Encryption
Script on page 91. This setting is applied to all new users created.

Attribute Attribute tag What it does Value
name
New User user new_ Password to assign a new user. This password is agile
Password user_password | ysed only for new users. Passwords cannot be

propagated. This value must meet any account
policies you have set in your target instance. The
password must be encrypted.

Process Extension Association Rule

<px_association_rule> attribute is available to the Base Class, Class, and Subclass
configuration types.

ACP works from the premise that Agile PLM configuration information is maintained in one instance
and then propagated to other Agile PLM instances after it has been tested. In some situations this
may not be the case.

For example, a golden configuration Agile PLM instance will not be used for testing. In this example,
process extensions would not be developed and tested in the golden configuration environment.

To facilitate this multiple instance maintenance of configuration data, the propagation rule for
process extension associations can be overridden. By default, the associations in the source
instance are propagated to the target instance. This setting is applied to all objects of the
configuration type it is used with.

Attribute Attribute tag What it does Values (default value
name is in Bold font)
Process base_class px_ Determines how ACP will replace = the class—PX
Extension association_rule | handle the process extensions associations in the source are
Association i associated with each class. copied to the class in the target.
Rule class px_ ignore = the class-PX associations

association_rule in the target are left as is.

7

merge = the class—PX associations
in the source are merged with the
existing class-PX associations in
the target.

subclass px_
association_rule

7

User Association Rule

<user_association_rule> attribute is available to the Role and User Group configuration

v9.3.0.1 55

Agile Configuration Propagation

types.

ACP works from the premise that Agile PLM configuration information is maintained in one instance
and then propagated to other Agile PLM instances after it has been tested. In some situations this
may not be the case.

For example, a golden configuration Agile PLM instance will not be used for testing. In this example,
a complete set of users would not be updated in the golden configuration environment.

To facilitate this multiple instance maintenance of configuration data, the propagation rule for user
associations can be overridden. By default, the associations in the source instance are propagated
to the target instance. This setting is applied to all objects of the configuration type it is used with.

Attribute Attribute tag What it does Values (default value
name is in Bold font)
User role user Determines how ACP will replace = the user associations for
Association association_rule | handle the users associated the role or user group in the source
Rule i with each role or with each are copied to the role in the target.
user_group user_ | USETgroup. ignore = the user associations for

association_rule the role or user group in the target

are left as is.

merge = the user associations for
the role or user group in the source
are merged with the existing role-
user associations in the target.

Control File Sections

The Control File is divided into named sections. The Copy, Rename, and Delete sections direct
ACP what to propagate. The Subobject Maps and Ignore References sections provide additional
information and instructions when ACP is processing the Copy section. These are each detailed
below.

In addition to the "named sections" of the control file, certain business logic attributes are used to
influence the business logic that ACP uses with regard to certain configuration types. This is
covered in Business Logic Attributes in the Control File (on page 52).

Copy (<copy>) Section

The Copy section is marked by the <copy> element, and is used by both Copy and Compare to
determine which objects to process.

Each object has a configuration type, for example, List is a configuration type; Country is an object
of the configuration type List.

In the Copy section, you tell ACP which configuration types to process. Within each configuration
type, you tell ACP which objects to process. The list of objects configured in the Copy section
represents a set of objects found in the Source instance.

56 Agile Product Lifecycle Management

Chapter 8: Configuring the ACP Control File

Configuration Types in Copy Section

A complete list of configuration types that support Copy (Create object, Update object, or Replace
object) and the XML tags used to denote their elements can be found in ACP Configuration Types
(on page 67). In the Copy section of the control file, objects to copy can be marked for inclusion or
exclusion through regular expressions.

Note The Copy section expects the object name, not the object key.

Include Patterns

Include patterns allow you to limit which objects of a specific configuration type to process. If no
include pattern is configured, then ACP uses the "select all" pattern (.*) as the include pattern.

Exclude Patterns

Exclude patterns offer a second way to limit which objects of a specific configuration type to
process. If no exclude pattern is configured, then ACP uses no exclude patterns. In order for an
object to be excluded by an exclude pattern, the object matching the exclude pattern must also
match one of the include patterns. An object is automatically excluded if it does not match one or
more of the include patterns.

Regular Expressions

Regular expressions allow you to use "wild cards" in your selection of objects to include or exclude.
This prevents you from having to list each object individually. Keep in mind that an object's name
can be expressed as a regular expression that matches to itself only.

Regular expressions give special meaning to certain characters. If the special character is used in
an object's name, it will need special encoding in the include/exclude pattern to be able to match
the object's name exactly.

Therefore, you can list objects individually as using wildcards. Regular expressions use special
characters for its matching rules. These special characters may appear in your object names. See
Java Regular Expressions (on page 81) for more detailed information about regular expressions and
their special characters.

Putting it all together in Copy section

Let's take a look at a short example of the Copy section with some explanation of how ACP
interprets what was specified.

<copy>
<auto_number/>
<base_class>
</base_class>
<class>
<include>
<pattern>.*</pattern>
</include>
</class>

v9.3.0.1 57

Agile Configuration Propagation

<privilege>
<include>
<pattern>\ (Restricted\) . *</pattern>
<pattern>Add Phases</pattern>
<pattern>Modify Programs & Gates that I am owner of
</pattern>
<pattern>Admin\. Privilege</pattern>
</include>
</privilege>
<role user_association_rule="replace">
<include>
<pattern>.*</pattern>
</include>
<exclude>
<pattern>\(.*\).*</pattern>
</exclude>
</role>
<user>
<exclude>
<pattern>test.*</pattern>
</exclude>
</user>

</copy>

In the above example, here is what ACP will process by configuration type.

u]

Auto Number: This is a shorthand notation. The shorthand notation is an empty element. It tells
ACP to process the complete list of auto numbers found in the source data source.

Base Class: This is similar to the shorthand notation in that it is an empty element. It tells ACP to
process the complete list of base classes found in the source data source.

Class: In this example, we explicitly use the include pattern that matches all objects. It tells ACP
to process the complete list of classes found in the source data source.

Privilege: In this example, we have listed multiple patterns. The pattern "\(Restricted\).*"
matches privileges that begin with "(Restricted)". The pattern "\(Propagation\) Administrator"
matches a single privilege with the name "(Propagation) Administrator".

Notice the need to escape the parentheses as parentheses are regular expression special
characters.

The other three patterns demonstrate that it is possible to match on a specific object name.
That is, the pattern can match exactly one object name.

Notice the encoding of the ampersand (&) in "Modify Programs & Gates that | am owner
of". This is necessary because the ampersand (&) is an XML special character.

Also, notice the encoding of the period (.) in "Admin\. Privilege". This is necessary because
period (.) is a regular expression special character.

Role: This example demonstrates the use of exclude patterns. In this example, we are asking
ACP to process all roles except those that begin with "(...)". For instance, this would exclude
the roles that begin with "(Propagation)" and "(Restricted)".

This example also illustrates the use of a business logic attribute. The attribute name is
"user_association_rule". The attribute value is "replace". "Replace" instructs ACP to replace the
users associated with the role in the target with those users associated with the role in the
source.

58

Agile Product Lifecycle Management

Chapter 8: Configuring the ACP Control File

= User: This example also demonstrates the use of exclude patterns. In this example, we omitted
the include patterns. This is perfectly fine since ACP assumes that all objects of a configuration
type will be processed when no include patterns are specified.

Rename (<rename>) Section

The Rename section is marked by the <rename> element. ACP uses the Source object key (API
Name, Name, or User ID) to map it to an object in the Target instance.

If the key of the object changes in the Source, ACP no longer has a way to look up the object in the
Target instance. The Rename section of the Control File resolves this dilemma. You can use the
Rename section to "re-key" (rename the key) objects in the Target instance.

ACP processes the Rename section of the Control File before it processes the Copy section. This
allows Copy to resolve any references to objects whose key has changed. Renames are processed
only when the Target is an Agile instance.

Configuration Types in Rename Section

A complete list of configuration types that support Rename and the XML tags used to denote their
elements can be found in ACP Configuration Types (on page 67).

In the Rename section of the Control File, objects to be renamed are specified by maps. An error is
reported if the object being renamed does not exist in the Target instance.

Key Maps

A key map maps an object by its key (APl Name, Name, or User ID) in the Source instance to an
object's key in the Target instance.

In order for the map to have meaning, these two conditions should be met:
o an object should exist in the Source instance with the map's Source key, and

@ an object should exist in the Target instance with the map's Target key.

Source Key

The Source key is the APl Name/Name/User ID of the object being mapped in the Source. Since
this is part of a key map, the exact API Name/Name/User ID of the object must be specified.

Target Key

The Target key is the APl Name/Name/User ID of the object being mapped in the Target. Since this
is part of a key map, the exact APl Name/Name/User ID of the object must be specified.

Putting it all together in Rename section

Let's take a look at a short example of the Rename section with some explanation of how ACP
interprets what was specified.

<rename>
<list>

v9.3.0.1 59

Agile Configuration Propagation

<map>
<source_apiname>Countries</source_apiname>
<target_apiname>Country</target_apiname>
</map>
<map>
<source_apiname>My Category</source_apiname>
<target_apiname>Category 9 List</target_apiname>
</map>
</list>
<privilege>
<map>
<source_apiname> (Propagation) Configuration Administrator
</source_apiname>
<target_apiname> (Propagation) Administrator</target_apiname>
</map>
<map>
<source_apiname>Modify My Projects &
Gates</source_apiname>
<target_apiname>Modify Projects & Gates that I am owner
of
</target_apiname>
</map>
<map>
<source_apiname>Administrator Privilege</source_apiname>
<target_apiname>Admin. Privilege</target_apiname>
</map>
</privilege>
<subclass>
<map>
<source_apiname>My ECO</source_apiname>
<target_apiname>ECO</target_apiname>
</map>
</subclass>

</rename>

In the above example, here is what ACP will process by configuration type.

m]

List: ACP will attempt the following renames:
®* Rename the list "Country" to "Countries";
* Rename the list "Category 9 List" to "My Category".

Privilege: ACP will attempt the following renames:

* Rename the privilege "(Propagation) Administrator " to "(Propagation) Configuration
Administrator"; Note that the regular expression special characters for the Open
Parenthesis and the Closed Parenthesis are not encoded here: this is because the map
contains exact names and not regular expressions.

* Rename the privilege "Modify Projects & Gates that | am owner of " to "Modify My Projects
& Gates".

* Rename the privilege "Admin. Privilege" to " Administrator Privilege". Note that the regular
expression special character for the Period are not encoded here: this is because the map
contains exact names and not regular expressions.

Subclass: ACP will attempt the following rename:

®* Rename the subclass "ECO" to "My ECQO".

60

Agile Product Lifecycle Management

Chapter 8: Configuring the ACP Control File

Delete (<delete>) Section

The Delete section is marked by the <delete> element. The Delete section allows you to propagate
deletes objects in the target. Deletes only get processed when the target is an Agile instance.
Deletes get processed before renames and copies. This allows ACP to report errors where you
have asked ACP to delete an object that is being referenced by an object that was also copied.

Configuration Types in Delete Section

A complete list of configuration types that support <delete> and the XML tags used to denote their
elements can be found in ACP Configuration Types (on page 67). In the Delete section, objects to
be deleted are specified as a list of names.

Name
The Delete section expects object names, not object keys.

The name is the name of the object to be deleted. Deletes must be done by the exact name of the
object. This helps to prevent you from deleting objects unintentionally.

Putting it all together in Delete section

Let's take a look at a short example of the Delete section with some explanation of how ACP
interprets what was specified.

<delete>

<list>
<name>Category 8 List</name>
<name>Category 9 List</name>
<name>Category 10 List</name>

</list>

<privilege>
<name> (Propagation) Administrator</name>
<name>Modify Programs & Gates that I am owner of</name>
<name>Admin. Privilege</name>

</privilege>

<subclass>
<name>ECO</name>

</subclass>

</delete>
In the above example, here is what ACP will process by configuration type.
= List: ACP will attempt to delete lists with the following names:
* "Category 8 List";
e "Category 9 List";
e "Category 10 List".
o Privilege: ACP will attempt to delete privileges with the following names:
* "(Propagation) Administrator";

v9.3.0.1 61

Agile Configuration Propagation

* "Modify Programs & Gates that | am owner of ;
* "Admin. Privilege".

o Subclass: ACP will attempt to delete the subclass named "ECO".

Ignore References (<ignore_references>) Section

The Ignore References section is marked by the <ignore_references> element.

The Ignore References section does not propagate any information. Since data may be propagated
from a Development instance to a Production instance, there may be test data that will not get
propagated. However, there may be configuration data that does get propagated but refers to test
data. Since the test data does not get propagated, any references to test data will generate errors
because the test data it references will not be present in the Production instance. This is
undesirable as it is writing "OK" errors to the Error log, which amounts to a lot of noise.

A common example where this is useful is Roles. You may have created test users in your
development instance. You assigned several roles to the test users. You will want to propagate the
roles, but not the test users. The Ignore References section allows you to specify "ignore
references" to test users. Then, when ACP cannot resolve a user, the error message that ACP
would normally issue is suppressed.

The Ignore Reference section expects object names, not object keys.
Configuration Types in Ignore References Section

The "ignorable" references are limited to configuration types of those Administrator nodes where
test objects are likely to be created:

o Users

= User groups
o Roles

o Privileges

In the Ignore References section of the Control File, object references to ignore can be
accomplished through regular expressions. This promotes the use of naming conventions. For
instance, test users could have user logins that begin with "test".

Patterns

Patterns allow you to specify one or more object names to be ignored. Given that this is a pattern,
you can use regular expressions to select multiple objects with a single pattern.

Regular Expressions

Regular expressions allow you to use wildcards in your selection of objects to include or exclude.
This prevents you from having to list each object individually. Keep in mind that an object's name
can be a regular expression itself. Therefore, you can list objects individually as using wildcards.
Regular expressions use special characters for its matching rules. These special characters may
appear in your object names. Please see Java Regular Expressions (on page 81) for more detailed

62 Agile Product Lifecycle Management

Chapter 8: Configuring the ACP Control File

information about regular expressions and their special characters.
Putting it all together in Ignore References section

Let's take a look at a short example of the Ignore References section with some explanation of how
ACP interprets what was specified. The Ignore References section of the Control File is honored by
Copy and Deep Compare.

<ignore_references>

<user>
<pattern>test.*</pattern>
<pattern>dev. *</pattern>
<pattern>demol</pattern>

</user>

<role>
<name>test.*</pattern>

</role>

</ignore_references>

In the above example, ACP will suppress error messages for objects that cannot be resolved that
also match the patterns listed.

@ User: Ignore user references to users whose user ID starts with "test" or "dev" as well as the
specific user ID "demo1".

o Role: Ignore user references to roles whose name starts with "test".

Subobject Maps (<subobject_maps>) Section

The Subobject Maps section is marked by the <subobject_maps> element. A subobject is
contained by an object. For example, lists contain list entries. Therefore, a list entry is a subobject of
a list. Just as ACP uses an object key (APl Name/Name/User ID) to map an object between the
source and the target, ACP uses a subobject’s key to map subobjects between the source and
target. If the key of the subobject changes in the source, ACP no longer has a way to look up the
subobject in the target instance.

The Subobject Maps section resolves this dilemma. You can use the <subobject _maps> section to
map subobject keys between the source instance and target instance. ACP uses the contents of the
Subobject Maps section when it is processing the Copy section. Subobject maps only have
meaning when the target is an Agile instance.

Configuration Types in Subobject Maps Section

The configuration types that support subobject maps are: <base_class>, <class>,
<subclass>, <list>, <workflow>, <unit_of_measure_family>, and
<column_assignments>

In the Subobject Maps section of the Control File, subobjects whose names have changed are
documented by maps. Some configuration types may have more than one subobject type. For
example, <class> has LifeCycle Phases and Attributes. A table that lists the corresponding
subobject maps and the methods for renaming can be found in Renaming Subobjects on page 72.

v9.3.0.1 63

Agile Configuration Propagation

Object Reference

As the name subobject implies, a subobject is subordinate to an object. Therefore, in order for ACP
to match by the subobject key, it must also have the name of the object that the subobject belongs
to. What if the object name and the subobject key are changing at the same time? Since ACP
dictates the processing order that configuration types are copied, the referenced object name is
assumed to have been changed in the target already. Therefore, the subobject maps must always
use the new name of the object.

Subobject Type

Some objects may have multiple types of subobjects. In order for ACP to interpret the subobject
name map correctly, it must know the type of subobject being mapped.

Flex Attribute Rename

A Subobject Map has been introduced that allows ACP to rename user-defined flex-field attributes.
The XML tags are given below:

Class

<classes>
<class name="Items">
<attributes>
<map>
<source_apiname>Mass</source_apiname>
<target_apiname>Flex0l</target_apiname>
</map>
</attributes>
</class>

</classes>

Subclass

<subclasses>
<subclass name="Part">
<attributes>
<map>
<source_apiname>Weight</source_apiname>
<target_apiname>Flex02</target_apiname>
</map>
</attributes>
</subclass>

</subclasses>
Key Maps

A key map maps a subobject key (APl Name/Name) in the Source instance to a subobject key in
the Target instance.

Source Key

The Source key is the APl Name/Name of the subobject being mapped in the Source. Since this is
part of a key map, the exact APl Name/Name of the subobject must be specified.

64 Agile Product Lifecycle Management

Chapter 8: Configuring the ACP Control File

Target Key

The Target key is the API Name/Name of the subobject being mapped in the Target. Since this is
part of a key map, the exact APl Name/Name of the subobject must be specified.

Putting it all together in Subobject Maps section

Let's take a look at a short example of the Subobject Maps section with some explanation of how
ACP interprets what was specified. The Subobject Maps section of the Control File is honored by
Copy and Deep Compare. Subobject maps only come into play when the key of the object matches
the object key being Copied or Deep-compared.

<subobject_maps>
<lists>
<list apiname="ReasonCode">
<list_entries>
<map>
<source_apiname>Enhancement</source_apiname>
<target_apiname>Product Enhancement</target_apiname>
</map>
<map>
<source_apiname>Improvement</source_apiname>
<target_apiname>Reliability Improvement</target_apiname>
</map>
</list_entries>
</list name>
<list name="Location| |Europe">
<list_entries>
<map>
<source_apiname>Czech Republic</source_apiname>
<target_apiname>Czechoslovakia</target_apiname>
</map>
</list_entries>
</list name>
</lists>
<subclasses>
<subclass apiname="Customer">
<life_cycle_phases>
<map>
<source_apiname>Current</source_apiname>
<target_apiname>Active</target_apiname>
</map>
</life_cycle_phases>
<attributes>
<map>
<source_apiname>Customer Details</source_apiname>

v9.3.0.1 65

Agile Configuration Propagation

<target_apiname>Page Three</target_apiname>
</map>
</user_interface_tabs>
</subclass>
<subclass apiname="ECR">
<attributes>
<map>
<source_apiname>Page Three| |Origination Date
</source_apiname>
<target_apiname>Page Three| |Flex Date(Ol</target_apiname>
</map>
</user_interface_tabs>
</subclass>
</subclasses>
<subobject_maps>

In the above example, ACP will be able to map the following subobjects.

o List (Reason Code): The list entry "Enhancement” and "Product Enhancement" are mapped as
the same. The result will be the list entry will be renamed to "Enhancement”. The list entry
"Improvement” and "Reliability Improvement" are mapped as the same. The result will be the
list entry will be renamed to "Improvement”.

o List (Location||Europe): This is an example of renaming a list entry in a cascade list. Note the way
the cascade sub-list is specified. A list entry belongs to a specific list. With cascade lists, the
specific list is a sub-list. The sub-list names are separated with a double pipe (||) (period could
not be used since a period is valid within a list name). The list entry "Czech Republic" and
"Czechoslovakia" are mapped as the same. The result will be the list entry will be renamed to
"Czech Republic".

o Subclass (Customer): This example illustrates specifying multiple subobject types for a single
object. In this example, the life cycle phase "Current" is mapped to "Active". The result will be
the life cycle phase will be renamed to "Current”. In addition, the user interface tab "Customer
Details" is mapped to "Page Three". The result will be the user interface page will be renamed
to "Customer Details".

o Subclass (ECR): The user interface tab "ECR Details" is mapped to "Page Three". The result will
be the user interface page will be renamed to "ECR Details".

66 Agile Product Lifecycle Management

Appendix A
ACP Configuration Types

This Appendix includes the following:

= Supported ACP Configuration TYPES........cccvieuiiireiriiisisisciensesstssse sttt bbb s s 67
= Configuration Types and MatCh KEYS........couerirrriirrce s 70
= RENAMING SUDODIECES........ouceieirtecei i s b 72
= Configuration Types as Evaluated by Deep COMPATE..........coerrireeirecereeeesees e 72

Supported ACP Configuration Types

ACP propagates the data contents of configuration types, which are roughly the same as the
Administrator nodes. Not all propagation operations are supported by all Administrator nodes.

The following table shows the complete list of ACP-supported configuration types and the
propagation actions that are supported by each type. See Administrator Nodes that are Not
Propagated.

ACTIONS
Delete | Rename Copy
CONFIGURATION TYPES Create | Update | Replace
Administrator > Data Settings > Classes
<base_class> API
<class> Name is
class used as

the key,

so Base

Class

and

Class

cannot

be

renamed
<subclass> X X X X

Administrator > Data Settings (except Classes)

<character_set> (Exception: out-of-box X X X X
character sets are not propagated.)
<list> X X X X X
<process_extension> X X

v9.3.0.1 67

Agile Configuration Propagation

CONFIGURATION TYPES

ACTIONS

Delete

Rename

Copy

Create

Update | Replace

<auto_number>

<criteria>

Administrator > Workflow Settings

<workflow>

Administrator > User Settings

<account_policy>

<user>

<user_group>

<supplier_group>

<role>

<privilege>

X | X[X|X]|X

X | X[X]| X]| X

X | X[X]| X]| X

XX X|X]|X<]|Xx

Administrator > System Settings

<smart_rule>

<viewers_and_files>

<notification_template>

<full_text_search>

<column_assignments> (My
Assignments)

XX | X|X<]|Xx

<unit_of_measure_family> (UOM)

>

<company_profile>

<ppm_dashboard_management>

X

X

Administrator > System Settings > Product Cost Management

<pcm_ship_to_location>

X

X

<pcm_rfq_terms_and_conditions>

Administrator > System Settings > Product Portfolio Management

<ppm_cost_status>

X

X

<ppm_quality_status>

<ppm_resource_status>

<ppm_schedule_status>

X
X
X

X
X
X

X | X< | X<|Xx

68

Agile Product Lifecycle Management

Appendix A

ACTIONS
Delete | Rename Copy
CONFIGURATION TYPES Create | Update | Replace

<ppm_default_role> X X
Administrator > System Settings > Agile Content Service

<acs_subscriber> X X X X
<acs_destination> X X X X
<acs_event> X X X X
<acs_filter> X X X X
<acs_package_service> X X X X
<acs_response_service> X X X X

Administrator > System Settings > Product Governance & Compliance

<pgc_signoff_message>

<pgc_compliance_rollup_scheduling>

<pgc_compliance_rollup_rule_setting>

X[X | X | X

<pgc_supplier_declaration> — this config.
type contains all data in the Supplier
Declaration Process Extensions node
folder

Administrator > System Settings > Event Management

<em_event> X

<em_event_handler> X

<em_event_subscriber> X

<em_event_type>

X | X | X | X]|X

<em_event_handler_type>

Administrator > Server Settings

>

<server_location> (Locations node)

<server_file_manager> (Locations > File X X X
Manager tab)

<server_database> (Database node)

<server_preference> (Preferences node)

<server_task> (Task Configuration
node)

v9.3.0.1 69

Agile Configuration Propagation

Configuration Types and Match Keys

This table lists the configuration types and whether the match key is the key used to match objects
between Agile instances. In some cases, the key value can be changed, but generally the key is

intended to be static.

Configuration Type Match Key
Classes
<base_class> API Name
<class> API Name
<subclass> API Name
Data Settings
<auto_number> APl Name
<character_set> API Name
<criteria> APl Name
<list> APl Name
<process_extension> API Name
Workflow Settings
<workflow> API Name
User Settings
<account_policy> API Name
<privilege> APl Name
<role> API Name
<supplier_group> Name
<user> User ID
<user_group> Name
System Settings
<company_profile> API Name
<ppm_dashboard_management> APl Name
<full_text_search> API Name
<column_assignments> (My APl Name
Assignments)
<notification_template> APl Name
<smart_rules> APl Name

70

Agile Product Lifecycle Management

Appendix A

Configuration Type Match Key
<unit_of_measure_family> APl Name
<viewers_and_files> API Name
Product Cost Management
<pcm_ship_to_location> Name
<pcm_rfq_terms_and_conditions> APl Name
Product Portfolio Management
<ppm_cost_status> APl Name
<ppm_quality_status> APl Name
<ppm_resource_status> APl Name
<ppm_schedule_status> APl Name
<ppm_default_role> APl Name
Agile Content Service
<acs_destination> API Name
<acs_event> API Name
<acs_filters API Name
<acs_package_service> APl Name
<acs_response_service> APl Name
<acs_subscriber> API Name
Product Governance & Compliance
<pgc_signoff_message> APl Name
<pgc_compliance_rollup_scheduling> APl Name
<pgc_compliance_rollup_rule_setting> APl Name
<pgc_supplier_declaration> APl Name
Event Management
<em_event> APl Name
<em_event_handler> API Name
<em_event_subscriber> API Name
<em_event_type> API Name
<em_event_handler_type> API Name
Server Settings
<server_location> API Name

v9.3.0.1

7"

Agile Configuration Propagation

Configuration Type Match Key
<server_file_manager> APl Name
<server_database> API Name
<server_preference> APl Name
<server_task> API Name

Renaming Subobjects

Additionally, some Administrator objects have subobjects that can be renamed. In order to update
the subobiject correctly, ACP requires a key map for these subobjects.

Without the map, ACP will consider these subobjects to be different: the subobject with the old key
will be deleted and the subobject with the new key will be created.

Configuration Type Subobject Type Method for Rename
<base class> LifeCycle Phases Subobject Map (API Name)
<class> Attributes Subobject Map (APl Name)
<class> LifeCycle Phases Subobject Map (APl Name)
<subclass> Attributes Subobject Map (API Name)
<subclass> LifeCycle Phases Subobject Map (API Name)
<list> List Entries Subobject Map (API Name)
<workflow> Workflow Statuses Subobject Map (API Name)
<unit_of_measure_ UOMs Subobject Map (AP Name)
family> (UOM)

<column_assignments> Column Subobject Map (Name)
(My Assignments)

Configuration Types as Evaluated by Deep Compare

This table indicates how Deep Compare (the script and the report) evaluates the configuration types
tab by tab and exactly what Deep Compare distinguishes about each configuration type. As
explained in the "Compare Details" heading, attributes on the General Information tab of all
configuration types are considered by Deep Compare, while Where Used and History tabs are not
compared.

72 Agile Product Lifecycle Management

Appendix A

Deep Compare-
Supported
Configuration Types

Compare Details
Deep Compare will take care of Rename / Subobject Mapping / Ignore References.

History tabs are not considered for comparison.

<account_policy>

All attributes of the Source instance are compared to all attributes of Target instance; if
Source data does not match Target data, these differences are recorded in Deep Compare
report.

Each attribute of this configuration will be treated as individual object.

<acs_destination>

General Information tab: All attributes of the Source instance are compared to all
attributes of Target instance; if Source data does not match Target data, these differences
are recorded in the Deep Compare report.

<acs_event>

General Information tab: All attributes of the Source instance are compared to all
attributes of Target instance; if Source data does not match Target data, these differences
are recorded in the Deep Compare report.

<acs_filter>

General Information tab: All attributes of the Source instance are compared to all
attributes of Target instance; if Source data does not match Target data, these differences
are recorded in the Deep Compare report.

Filter tab: All attributes of the Source object are compared with all attributes of the Target
object, if Source data does not match Target data, these differences are recorded in Deep
Compare report.

<acs_package_service>

General Information tab: All attributes of the Source instance are compared to all
attributes of Target instance; if Source data does not match Target data, these differences
are recorded in the Deep Compare report.

<acs_response_service>

General Information tab: All attributes of the Source instance are compared to all
attributes of Target instance; if Source data does not match Target data, these differences
are recorded in the Deep Compare report.

<acs_subscriber>

General Information tab: All attributes of the Source instance are compared to all
attributes of Target instance; if Source data does not match Target data, these differences
are recorded in the Deep Compare report.

Subscriber Details tab: Subscribers Details will be compared based on the Destination(s)
match. If source Destination(s) matching with target Destination(s), then other properties
i.e., Filter, Roles(s), Format, Language, and Site will be compared; otherwise comparison
will be ignored .However report will clearly tells that which is source only object and target
only object.

<auto_number>

General Information tab: All attributes of the Source instance are compared to all
attributes of Target instance; if Source data does not match Target data, these differences
are recorded in the Deep Compare report.

Where Used tab: Deep Compare will have entries for each Subclass if it is not existed in
source or target.

<base_class>

General Information tab: All attributes of the Source instance are compared to all
attributes of Target instance; if Source data does not match Target data, these differences
are recorded in the Deep Compare report.

Life Cycle Phases tab: Life Cycle Name (primary key) is the key value to compare other
Life Cycle Phases. All differences will be shown in the report including Source Only and

v9.3.0.1

73

Agile Configuration Propagation

Deep Compare-
Supported
Configuration Types

Compare Details
Deep Compare will take care of Rename / Subobject Mapping / Ignore References.

History tabs are not considered for comparison.

Target Only lifecycle names.

Process Extensions tab: All names of source process extension (primary key) are the key
value to compare all names of target process extension.

Classes and Event Subscribers tabs: These tabs are not considered for comparison.

<character_set>

General Information tab: All attributes of the Source instance are compared to all
attributes of Target instance; if Source data does not match Target data, these differences
are recorded in the Deep Compare report.

<class>

General Information tab: All attributes of the Source instance are compared to all
attributes of Target instance; if Source data does not match Target data, these differences
are recorded in the Deep Compare report.

Life Cycle Phases tab: Life Cycle Name (primary key) is the key value to compare other
Life Cycle Phases. All differences will be shown in the report including Source Only and
Target Only lifecycle names.

Process Extensions tab: All names of source process extension (primary key) are the key
value to compare all names of target process extension.

Attributes <User-Interface Tabs> tab: Each attribute of source object is compared to each
attribute of target object by using attribute name, if match found, then all properties of that
attribute will be compared and reported to Deep Compare if difference found.

If source flex attribute is not existed in the target instance or vice versa, then such
difference will be noticed in Deep Compare. However vice versa of this case is not
reported.

Only attribute name (regardless of properties change) of source and target will be reported
in Deep Compare if you rename out-of-the-box attribute at target/source. However if you
use Subobject Map for Attributes, then all properties of that attribute will be compared and
reported same if difference found.

Classes tab, Event Subscribers tab, and Attachments tab are not considered for
comparison purposes.

<company_profile>

General Information tab: All attributes of the Source instance are compared to all
attributes of Target instance; if Source data does not match Target data, these differences
are recorded in the Deep Compare report.

<criteria>

General Information tab: All attributes of the Source instance are compared to all
attributes of Target instance; if Source data does not match Target data, these differences
are recorded in the Deep Compare report.

Criteria tab: It compares at Criteria Level. If criteria attribute of source and target names
are found to be same, then Adv Compare will try to find out any other(Join Operator,
Relational Operator and Value) differences in the same level. If there are differences that
will be shown in the report otherwise it is not shown in the report.

However if Attributes names are different at source and target , then SOURCE ONLY and
TARGET ONLY columns will have an entry with reported values.

74

Agile Product Lifecycle Management

Appendix A

Deep Compare-
Supported
Configuration Types

Compare Details
Deep Compare will take care of Rename / Subobject Mapping / Ignore References.

History tabs are not considered for comparison.

Where Used tab is not considered for comparison.

<em_event>

General Information tab: All attributes of the Source instance are compared to all
attributes of Target instance; if Source data does not match Target data, these differences
are recorded in the Deep Compare report.

Where Used tab is not considered for comparison.

<em_event_handler>

General Information tab: All attributes of the Source instance are compared to all
attributes of Target instance; if Source data does not match Target data, these differences
are recorded in the Deep Compare report.

Where Used tab is not considered for comparison.

<em_event_subscriber>

General Information tab: All attributes of the Source instance are compared to all
attributes of Target instance; if Source data does not match Target data, these differences
are recorded in the Deep Compare report.

Where Used tab is not considered for comparison.

<em_event_type>

General Information tab: All attributes of the Source instance are compared to all
attributes of Target instance; if Source data does not match Target data, these differences
are recorded in the Deep Compare report.

Where Used tab is not considered for comparison.

<em_event_handler_type>

General Information tab: All attributes of the Source instance are compared to all
attributes of Target instance; if Source data does not match Target data, these differences
are recorded in the Deep Compare report.

Where Used tab is not considered for comparison.

<full_text_search>

General Information tab: All attributes of the Source instance are compared to all
attributes of Target instance; if Source data does not match Target data, these differences
are recorded in the Deep Compare report.

<list>

General Information tab: All attributes of the Source instance are compared to all
attributes of Target instance; if Source data does not match Target data, these differences
are recorded in the Deep Compare report.

List tab:

Case 1: List entries of Source or Target are Empty. Deep Compare will show the List
Entries/<Empty> of source/target by using delimiters. Delimiters are:

| ("pipe" character) — Separates list entries till leaf node, e.g., alb|c
; (semicolon) — Separates set of list entries separated by pipe, e.g., ab|c;d|e|f

Case 2: List of Source and Target is cascade list. Each list entry of Source is compared
with Each list entry of Target by considering the child -parent relationship hierarchy. Not
only used List-Name for comparison but also used parent-child relationship hierarchy
irrespective of same name existence across List unless sub objects map specification. If
source has list entry A and target does not have same entry, Deep Compare will specify
"Target Only"/"Source Only" in Status column.

v9.3.0.1

75

Agile Configuration Propagation

Deep Compare-
Supported
Configuration Types

Compare Details
Deep Compare will take care of Rename / Subobject Mapping / Ignore References.

History tabs are not considered for comparison.

Case 3: List of Source and Target is not cascade list. Same as Case 2 except child-parent
relationship hierarchy.

Case 4: List of Source or Target is cascade list. If any one of Source and Target has
cascade list and other has non-cascade list, Deep Compare simply names what are
cascade and non-cascade lists (does not show any list entries). The difference column will
NOT show a comparison.

<my_assignments> or

<column_assignments>

All attributes of the Source instance are compared to all attributes of Target instance; if
Source data does not match Target data, these differences are recorded in the Deep
Compare report.

<notification_template>

General Information tab: All attributes of the Source instance are compared to all
attributes of Target instance; if Source data does not match Target data, these differences
are recorded in the Deep Compare report.

Where Used tab is not considered for comparison.

<pcm_rfq_terms_and_
conditions>

Text of RFQ Terms and Conditions will be compared.

<pcm_ship_to_location>

General Information tab: All attributes of the Source instance are compared to all
attributes of Target instance; if Source data does not match Target data, these differences
are recorded in the Deep Compare report.

<pgc_compliance_rollup_
rule_setting>

General Information tab: All attributes of the Source instance are compared to all
attributes of Target instance; if Source data does not match Target data, these differences
are recorded in the Deep Compare report.

<pgc_sign_off_message>

General Information tab: All attributes of the Source instance are compared to all
attributes of Target instance; if Source data does not match Target data, these differences
are recorded in the Deep Compare report.

<pgc_supplier_
declaration>

It compares selected process extensions of source and target.

<ppm_cost_status>

General Information tab: All attributes of the Source instance are compared to all
attributes of Target instance; if Source data does not match Target data, these differences
are recorded in the Deep Compare report.

<ppm_dashboard_
management>

General Information tab: All attributes of the Source instance are compared to all
attributes of Target instance; if Source data does not match Target data, these differences
are recorded in the Deep Compare report.

Tables tab: Deep Compare will try to find a source attribute in target attributes list, if there
is a difference between them, then that property will be noticed in report.

<ppm_default_role>

General Information tab: All attributes of the Source instance are compared to all
attributes of Target instance; if Source data does not match Target data, these differences
are recorded in the Deep Compare report.

<ppm_quality_status>

General Information tab: All attributes of the Source instance are compared to all
attributes of Target instance; if Source data does not match Target data, these differences

76

Agile Product Lifecycle Management

Appendix A

Deep Compare-
Supported
Configuration Types

Compare Details
Deep Compare will take care of Rename / Subobject Mapping / Ignore References.

History tabs are not considered for comparison.

are recorded in the Deep Compare report.

<ppm_resource_status>

General Information tab: All attributes of the Source instance are compared to all
attributes of Target instance; if Source data does not match Target data, these differences
are recorded in the Deep Compare report.

<ppm_schedule_status>

General Info tab: Over Due Type will be compared.

Status tab => General Information tab: Same as above description.

<ppm_ui_configuration_
data>

Content: Attribute Groups: It compares only Selected Attributes and Attribute Groups.
Tables: It compares only Selected Columns and tables.
Action Groups: It compares only Selected Actions and Action Groups.

Layout: It compares only Form and Defined Layouts.

<privilege>

General Information tab: All attributes of the Source instance are compared to all
attributes of Target instance; if Source data does not match Target data, these differences
are recorded in the Deep Compare report.

Where Used tab is also considered for comparison.

<process_extension>

General Information tab: All attributes of the Source instance are compared to all
attributes of Target instance; if Source data does not match Target data, these differences
are recorded in the Deep Compare report.

Where Used tab is also considered for comparison.

<role>

General Information tab: All attributes of the Source instance are compared to all
attributes of Target instance; if Source data does not match Target data, these differences
are recorded in the Deep Compare report.

Privileges tab: Compares all names of source Privileges to the all names of target
Privileges, Deep compare will make an entry if there are intersected values are present.

Users tab: Compares all names of source Users to the all names of target Users, Deep
compare will make an entry if there are intersected values are present.

User Groups tab: Compares all names of source User-Groups to the all names of target
User-Groups, Deep compare will make an entry if there are intersected values are present.

<server_database>

General Information tab: All attributes of the Source instance are compared to all
attributes of Target instance; if Source data does not match Target data, these differences
are recorded in the Deep Compare report.

<server_file_manager>

File Manager tab: Same as General Information tab.

Vault Configuration: Deep compare will make an entry if the combination of Vault Type,
Description, Base Storage Dir, Purge Dir, and Category gets changed at source or target.

<server_|ocation>

General Information tab: All attributes of the Source instance are compared to all
attributes of Target instance; if Source data does not match Target data, these differences
are recorded in the Deep Compare report.

v9.3.0.1

77

Agile Configuration Propagation

Deep Compare-
Supported
Configuration Types

Compare Details
Deep Compare will take care of Rename / Subobject Mapping / Ignore References.

History tabs are not considered for comparison.

<server_preference>

General Information tab: All attributes of the Source instance are compared to all
attributes of Target instance; if Source data does not match Target data, these differences
are recorded in the Deep Compare report.

<server_task>

Task Configuration tab (same as General Information tab): All attributes of the Source
instance are compared to all attributes of Target instance; if Source data does not match
Target data, these differences are recorded in the Deep Compare report.

<smart_rule> General Information tab: All attributes of the Source instance are compared to all
attributes of Target instance; if Source data does not match Target data, these differences
are recorded in the Deep Compare report.

<subclass> Same as Class configuration.

<supplier_group>

General Information tab: All attributes of the Source instance are compared to all
attributes of Target instance; if Source data does not match Target data, these differences
are recorded in the Deep Compare report.

<unit_of_measure_
family>

General Information tab: All attributes of the Source instance are compared to all
attributes of Target instance; if Source data does not match Target data, these differences
are recorded in the Deep Compare report.

UOM: It will compare each entry of Source UOM to the each entry of target UOM.

<user>

General Information tab: All attributes of the Source instance are compared to all
attributes of Target instance; if Source data does not match Target data, these differences
are recorded in the Deep Compare report.

Preferences tab: Same as General Information tab.

Escalations tab: Deep Compare will give only intersected CRITERIA name and NOTIFY
USERS separated by":" in the respective columns of the report as separate entries
(Source Only and Target Only). However if the CRITERIA name is same at Source and
Target but the NOTIFY USERS name(s) is (are)changed in either, then Deep Compare
will treat them as a DIFFERENCE value, hence only one entry will be allocated to show
the both (source and target)values

User Groups tab: Deep Compare will give only intersected USER GROUP name and
STATUS separated by™:" in the respective columns of the report as separate entries
(Source Only and Target Only). However if the USER GROUP name is same at Source
and Target but the STATUS name is changed in either, then Deep Compare will treat
them as a DIFFERENCE value, hence only one entry will be allocated to show the both
(source and target)values

Share, Relationships, Subscription and Attachments tabs: These tabs are not
considered for comparison.

78

Agile Product Lifecycle Management

Appendix A

Deep Compare- Compare Details
_Suppqrted Deep Compare will take care of Rename / Subobject Mapping / Ignore References
Configuration Types '

History tabs are not considered for comparison.

<user_group> General Information tab: All attributes of the Source instance are compared to all
attributes of Target instance; if Source data does not match Target data, these differences
are recorded in the Deep Compare report.

Escalations tab: Deep Compare will give only intersected CRITERIA name and NOTIFY
USERS separated by":" in the respective columns of the report as separate entries
(Source Only and Target Only). However if the CRITERIA name is same at Source and
Target but the NOTIFY USERS name(s) is (are)changed in either, then Deep Compare
will treat them as a DIFFERENCE value, hence only one entry will be allocated to show
the both (source and target)values

Users tab: Deep Compare will give only intersected USER name and ROLES separated
by":" in the respective columns of the report as separate entries (Source Only and Target
Only). However if the USER name is same at Source and Target but the ROLES name is
changed in either, then Deep Compare will treat them as a DIFFERENCE value, hence
only one entry will be allocated to show the both (source and target)values.

Share, Relationships and Attachments tabs: These tabs are not considered for
comparison.

<viewers_and_files> General Information tab: All attributes of the Source instance are compared to all
attributes of Target instance; if Source data does not match Target data, these differences
are recorded in the Deep Compare report.

Banners and File Association tabs; Compares all names of Source file types to all
names of Target file types. Deep Compare creates an entry if at least one name has been
changed at Source or Target. It also compares selected autogenerated Thumbnails.

Watermark tab: compares each Watermark of Source to each Watermark of target.

<workflow> General Information tab: All attributes of the Source instance are compared to all
attributes of Target instance; if Source data does not match Target data, these differences
are recorded in the Deep Compare report.

Status tab: compares all statuses and its associated Criteria.

Log and Report Files for Deep Compare

@ Verbose Log: This log is really not necessary as Deep Compare does not do any update or
create actions on Agile instances. This file is empty.

= Error Log: This log file is created in the current project directory with a default filename of
deep_compare.err.

v9.3.0.1 79

Agile Configuration Propagation

= Console (stdout) Log: The following message displays during execution of Deep Compare
command.

ACP DeepCompare SUCCEEDED - Completed with no errors or notes.

Report Generation in Progress, Please Wait...
Report Generated Successfully...

Please Check The Report @
D:\ACPWorkDir9.3.0.1\project2\deep_compare.xls

Error Level = 0

= Process Log: This log file is created in the current project directory with a default filename of
deep_compare.log.

o Deep Compare report: The Excel report file is created in the current project directory with a default
file name of deep_compare.xls.

80 Agile Product Lifecycle Management

Appendix B
Java Regular Expressions

This Appendix includes the following:

B SPECIAI CRAACETSvvivcveicecieice ettt sea bbb bbbt a e 81
= Regular EXpression EXAMPIES. ..ot 82

You can use Java regular expressions to select ACP configuration types or other Administrator
objects to propagate (object names are also valid expressions). Both regular expressions and XML
have special characters. The ACP control file uses an XML format, therefore, normal XML
characters such as ‘<’ and >’ must be treated differently in a pattern so that XML is not confused. If
you want to match on these special characters in a regular expression, you must encode the
character so that XML or Java will not interpret the character as a special character.

Special Characters

These two tables list special characters you must be aware of. The table "Regular Expression

Examples" (below) gives some examples of how to match on the special characters most likely to
appear in object names.

XML Special Characters

Characters Encoding
& &
< <
> &at;
"

Java Regular Expression Special Characters

For a comprehensive reference to Java regular expressions, please refer to Sun’s Website

(http://java.sun.com/j2se/1.4.2/docs/api/javal/util/regex/Pattern.html) for information in the section,
java.util.regex Class Pattern.

Characters Encoding

\ \

\

? \?
* *
+ \+

v9.3.0.1 81

http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html

Agile Configuration Propagation

Characters Encoding
A \W
$ \$
[\
] \
(\
))
{ ¥
} \}
! \
\:

Regular Expression Examples

Regular Expression

Meaning

Possible Matches

All names

Customers

ABC

Test_Object

Nuts & Bolts
Manufacturing Part
(Restricted) Object

Test.*

Names beginning with “Test”

Test
Test_Object
Test 123

FTest

Names ending with “Test”

Test
My Object - Test
Object 123 — Test

F&.*

Names containing an ampersand

Nuts & Bolts
Nuts&Bolts

\(Acme)\).*

Names that begin with “(Acme)”

(Acme) Object
(Acme) Nuts & Bolts

\(Test\) Nuts & Bolts

Name that matches “(Test) Nuts & Bolts”

(Test) Nuts & Bolts

A[Dev\]

Names that end with “[Dev]’

Object [Dev]
Nuts & Bolts [Dev]

Nuts & Bolts \[Dev\]

Name that matches “Nuts & Bolts [Dev]’

Nuts & Bolts [Dev]

82

Agile Product Lifecycle Management

Appendix C
ACP Properties

This Appendix includes the following:

B PIOPEMY SOUICESo.viiiieiicte ettt et s bbb b s bbbt bbbt b e 83
B DEfiNING PrOPEIIESvocee s e 83
I o (o]0 OSSO 84

ACP provides a set of properties for you to communicate to ACP how you would like ACP to interact
with your environment. These properties include information for connecting to Agile PLM instances,
log file names, and behavior manipulation. ACP offers great flexibility with setting properties. The
primary use of this flexibility is to allow you to share properties across projects. This is especially
useful for connections since chances are all of your projects will use the same connections.

Property Sources

Since ACP allows you to set properties in multiple places, it is important that you understand the
precedence order ACP uses for deciding which value to use if the property is set in multiple places.
If the same property is defined multiple times in the same source, the first occurrence is used.

Order Property Description
Source

1. Program Defined These are properties set by the program that cannot be overridden.

2. Command Line These are -D options specified on the command line and passed to the
Property program via the ACP script used.

3. Command Line These are names of property files specified on the command line and passed
Property File to the program via the ACP script used.

4, Project Property This is the property file specific to your project. It is the project.properties file
File located in your project folder.

5. Common Property This is a property file which can be shared across all ACP projects for a
File single version. The name of this property file must be set in your

project.properties file. This file can be located anywhere.

6. Global Property File | This is a property file which can be shared across all ACP projects for all
versions. The name of this property file must be set in your project.properties
file. This file can be located anywhere.

7. Program Default These are properties set by the program that can be overridden.

Defining Properties

ACP uses Java-style properties. As mentioned before, ACP provides great flexibility with its

v9.3.0.1

83

Agile Configuration Propagation

properties. Properties can be defined in terms of other properties. You can create your own
properties. And finally, properties can be referenced through indirection.

Java-style Property

Java-style properties syntax:

<property name> = <property value>
e Example:

prod.name = Acme Production

Property References

Properties can be defined in terms of other properties. This is very powerful as it allows for ease of
automation. ACP uses the Ant-style property reference.
Reference Syntax:
${<property name>}
e Example:

acp.method = export
acp.run.datetime = 20090603_142442
log.process.name = ${acp.method}_S${acp.run.datetime}.log

result: log.process.name = export_20090603_142442.1og
Indirect References

To extend the power of defining properties in terms of others, ACP supports the use of indirection.
This power is usually not warranted. It exists to support the specification of connections. ACP refers
to connections as src or tgt. If ACP required you to use these names, you would need to remember
to modify the project.properties file each you wanted to use a different connection. To simplify this,
ACP allows you to define all of your connections once and give each connection a nickname.

Indirect Reference Syntax:

${${<property name>}}
e Example:

src.ref = prod
prod.name = Acme Production
log.process.name = ${S{src.ref}.name}.log

result: log.process.name = Acme Production.log

Properties

Here are the properties known by ACP. You can also create your own properties. The properties
you create would only be useful if used in the definition of other properties. You can find detailed
information regarding the properties known to ACP in the file <ACP Install

84 Agile Product Lifecycle Management

Appendix C

Directory>/templates/properties.txt.

Agile-owned Properties

The properties listed here are set by the program and cannot be overridden. These properties are
made available to you so that you may use them in the definition of other properties.

Property Name

Description

acp.program.name

The name of the ACP program being run.

acp.program.version

The version of the ACP program being run.

acp.program.date

The date the ACP program was started (YYYYMMDD).

acp.program.time

The time the ACP program was started (HH24MISS).

acp.program.datetime

The date and time the ACP program was started (YYYYMMDD_HH24MISS).

acp.method

The method (export, import, name_compare, deep_compare) that ACP will use. The
method determines the type of the source and target connections.

Possible Values:
export — source is Agile; target is XML
import — source is XML, target is Agile

name_compare and deep_compare — source is XML, target is Agile

src.ref

Provides a level of indirection for the propagation source. This allows the actual
source to be determined on the command line. Refers to a nickname for a
connection.

tgt.ref

Provides a level of indirection for the propagation target. This allows the actual
target to be determined on the command line. Refers to a nickname for a
connection.

Agile-defaulted Properties

The properties listed here are set by the program; however, their values can be overridden.

Property Name

Description

acp.debug

Indicates if stack traces should be included with error messages. Stack traces are useful for
Agile Customer Care to solve issues.

Possible Values:
false — stack traces are included (default)

true — stack traces are not included

acp.verbose

Indicates if detailed propagation information should be written to the verbose log.
Possible Values:

false - no verbose information is logged (default)

v9.3.0.1

85

Agile Configuration Propagation

Property Name

Description

true — verbose information is logged

objects.suppress.skipped

Indicates if the names of objects which do not match the selection regular expressions
should be logged.

Possible Values:
false — skipped objects are logged (default)

true — skipped objects are not logged

control.filename

The name of the control file. (format: [<file path>/]<file name>.xml. Default: config.xml

log.process.filename

The name of the process log file (format: [<file path>/]<file name>). If no path is specified,
the log file is created in the current project directory. Default: ${acp.method}.log

log.process.open.mode

Indicates how ACP should open the process log file when it already exists.
Possible Values:
append — appends to the file if already exists

overwrite — overwrites the file if already exists

log.error.filename

The name of the error log file (format: [<file path>/]<file name>). If no path is specified, the
log file is created in the current project directory. Default: ${acp.method}.err

log.error.open.mode

Indicates how ACP should open the error log file when it already exists.
Possible Values:
append - appends to the file if already exists

overwrite — overwrites the file if already exists

log.verbose.filename

The name of the verbose log file (format: [<file path>/]<file name>). If no path is specified,
the log file is created in the current project directory. Default: ${acp.method}Verbose.log

log.verbose.open.mode

Indicates how ACP should open the verbose log file when it already exists.
Possible Values:
append - appends to the file if already exists

overwrite — overwrites the file if already exists

Customer-owned Properties

The properties listed here are set by the program, however, their values can be overridden.

Note Connection nicknames are a concept, not a property. The nickname is used to qualify a
connection property (use <nickname>.name; for example, prod.name fora
connection nicknamed “prod”).

86

Agile Product Lifecycle Management

Appendix C

Property Name

Description

global.properties.filename

The path and name to an optional global properties file. This properties file is intended to allow
you to share properties across all projects for all versions of ACP. An example of this file can be
found at <ACP Install Dir>/templates/global.properties.

Note: Use forward slashes (/) as the path separator.

common.properties.filename

The path and name to an optional common properties file. This properties file is intended to allow
you to share properties across all projects for a single version of ACP. This is especially useful
for maintaining connection information. An example of this file can be found at <ACP Install
Dir>/templates/common.properties.

Note: Use forward slashes (/) as the path separator.

<nickname>.name

This is used as a descriptive name for the connection. It is provided for you to use in the
definition of other properties.

<nickname>.url

The Agile PLM URL for the connection. Format: http://<hosthame>[:<port number>]/Agile.
Essentially, this is the URL used to connect to the Agile PLM web client through "/Agile".

<nickname>.username

The login name for a valid Agile user which has Administrator privileges to connect to the Agile
PLM instance referenced by this connection. Default: propagation.

<nickname>.password

The password for the Agile user used to connect to the Agile PLM instance referenced by this
connection. Passwords can be specified as cleartext or encrypted text. ACP uses
<nickname>.password.mode to determine how to interpret this password.

<nickname>.password.mode

This directs ACP on how to interpret the password specified by the <nickname>.password
property.

Possible Values:

cleartext- ACP uses the password text as supplied.encrypted- ACP decrypts the password text to
log in.

prompt- ACP ignores the password text and prompts the user for the password.

<nickname>.xml

The name to use for the XML archive when exporting from or importing from this Agile PLM
instance (format: [<absolute path>/]<Agile XML archive name>.agl).

Here are some complete examples for defining a connection, using “Acme” as the customer name.

dev.name=Acme Development

dev.url=http://agileplm-dev.acme.com:7777/Agile

dev.username=propagation
dev.password=4DB08E9B1EBFAE
dev.password.mode=encrypted

dev.xml=export_dev.agl

prod.name=Acme Production

prod.url=http://agileplm-prod.acme.com:7777/Agile

prod.username=propagation

v9.3.0.1

87

Agile Configuration Propagation

prod.password=4DB08E9B1EBFAE
prod.password.mode= encrypted
prod.xml=export_prod.agl

88 Agile Product Lifecycle Management

Appendix D
ACP Scripts

This Appendix includes the following:

B WOTKING DIFECIOTY ...ttt ettt b bbb bbb b s bbbt bbbt ns s 89
- 117 1 (o] 01 TP 89
B RUNNING SCIPES .vueereeiece ettt bbb 89
N (o]0 1o F= 0 0 T T 4] o TSP 90
B VEISION SCHIPL ..ovviecteiict ettt et e s bbb bbbt e b b ae bbb b s bbbt bt et a et bt et a s 90
= Project Management SCHIPLvciiiiiicesics ettt bbb bbbt 91
= PassWOrd ENCIYPion SCHPL.........ciireriiieiceitets sttt nb e 91
= Object Name COMPANSON SCHIPLciuiiiiririeirciecs s 92
= Object Detail COMPASON SCHPL.......vueereceeireeeere ettt seas e st ees sttt ense s 92

ACP is command-line driven. The ACP programs are initiated by scripts provided with ACP. All
scripts are installed to the bin directory under the ACP Install Directory.

Working Directory

Run the ACP scripts from the project directory you are working with. Running ACP from the project
directory provides ACP with context needed to run. Specifically, ACP looks for the project.properties
file in the current directory.

cd <ACP Work Directory>/<project directory>

Java Home

ACP requires Java 1.5. You are required to install Java 1.5. You can use the ACP_JAVA HOME
environment variable to tell ACP where the JRE is installed. This allows you to use the
JAVA_HOME environment variable for other uses if you wish.

* Windows: set ACP_JAVA_HOME=<Java JRE 1.5 Directory>
® Unix: export ACP_JAVA_HOME=<Java JRE 1.5 Directory>

You may wish to add this environment variable to your login profile (Unix) or to the system
environment variables (Windows).

Running Scripts

All ACP scripts are installed to the bin directory under the ACP Install Directory. You can run the
scripts in a couple of ways.

v9.3.0.1 89

Agile Configuration Propagation

ACP Launcher

For convenience, a special script is installed to the project directory. This script is named acp[.bat].
It allows you to launch an ACP script without having to specify the entire path to the bin directory
where the ACP script is located.

o Usage: acp <script name> [<script parameters>]

Propagation Scripts

ACP provides scripts for propagating data from one Agile PLM instance to another Agile PLM
instance via a target ACP XML archive.

export

The export script exports configuration data from a source Agile PLM instance to a target ACP XML
archive. This script uses the connection nicknames defined in the Project Properties file. It
determines the name of the ACP XML archive by the <nickname>.xml property. Each connection
can have its own XML archive.

The export script only needs a single parameter because it has enough information to know how to
connect to an Agile PLM instance as well as what the ACP XML archive is called. The -debug
option provides stack traces in the error messages. These stack traces are only useful to Agile
Customer Care.

o Usage: acp export <source nickname> [-debug]

o Example: acp export dev

import

The import script imports configuration data from a source ACP XML archive to a target Agile PLM
instance. This script uses the connection nicknames defined in the Project Properties file. It
determines the name of the ACP XML archive by the <nickname>.xml property. Each connection

can have its own XML archive. The -debug option provides stack traces in the error messages.
These stack traces are only useful to Agile Customer Care.

o Usage: acp import <source nickname> <target nickname> [-debug]

o Example: acp import dev prod

Version Script

ACP provides a script for determining the version of ACP being run.

version

The version script reports the version of ACP being run and also indicates the required version of

90 Agile Product Lifecycle Management

Appendix D

the Agile PLM instance it can connect to.
@ Usage: acp version

@ Sample Output:

Agile(TM) ACP CopyConfig (Version ACP 9.3.0.1 (Build 15))
ACP Version: ACP 9.3.0.1 (Build 15)
Required Agile PLM Version: 9.3.0.1 (Build 15)

Project Management Script

ACP provides a script for managing the creation of ACP projects.

create_project

The create_project script creates a clean project. This project will look identical to the sample
project created by the installer. The project folder will contain three files: ACP Launcher, Project
Properties, and Control File.

1. Choose a name for the new project folder. The folder name cannot already exist.
2. Open a terminal window (Windows: DOS window; Unix: shell)

3. Navigate to the work directory specified when ACP was installed. Here are examples based on
the default work directories provided by the ACP Installer.

* Windows: cd C:\Agile\ACPWork

® Unix: cd /<user home>/agile/acpwork

4. Runthe ACP create_project script. The new project name can be specified on the command
line or, if it is not specified, the script prompts you for it.

® Usage: acp create_project [<project_name>]

Password Encryption Script

ACP provides scripts for getting the encrypted string for a password. Typically, you will not want
clear text passwords stored in text files on your computer. ACP allows you to configure passwords
as encrypted passwords.

encryptpwd

The encryptpwd script returns an encrypted string for a clear text password entered. You cannot
pass the password you wish to get the encrypted form for on the command-line. The script will
prompt you for the clear text password.

® Usage: acp encryptpwd

v9.3.0.1 91

Agile Configuration Propagation

Object Name Comparison Script

Name Compare provides a script to compare object names. This script is designed to help you
ensure your Control File has the proper Rename maps for object names.

Note The name_compare script compares object names only. Use the deep_compare script to
perform a detailed object comparison.

name_compare

The name_compare script compares lists of object names between a source ACP XML archive and
a target Agile PLM instance.

This script uses the connection nicknames defined in the Project Properties file. It determines the
name of the ACP XML archive by the <nickname>.xml property. Each connection can have its own
XML archive.

o Usage: acp name_compare <source nickname> <target nickname> [-debug]

o Example: acp name_compare dev prod

Object Detail Comparison Script

Deep Compare provides a detailed comparison of an object's definition or configuration.
deep_compare

The deep_compare script compares lists of object attributes between a source ACP XML archive
and a target Agile PLM instance.

This script uses the connection nicknames defined in the Project Properties file. It determines the
name of the ACP XML archive by the <nickname>.xml property. Each connection can have its own
XML archive.

o Usage: acp deep_compare <source nickname> <target nickname> [-debug]

o Example: acp deep_compare dev prod

How to Generate the Deep Compare Difference Report

Command:

<ACPWorkDir>acp deep_compare srcName tgtName

Example:

D:\ACPWorkDir\project>acp deep_compare ACP9301_SRC ACP9301_TRG

92 Agile Product Lifecycle Management

Appendix D

Console Message:

This message indicates the status of Deep Compare:
ACP DeepCompare SUCCEEDED - Completed with no errors or notes.

================Report Generation in Progress, Please Wait...
Report Generation in Progress, Please Wait...

Report Generated Successfully...

Please Check The Report @ D:\ACPWorkDir\project2\deep_compare.xls

Error Level = 0

Note If you run Deep Compare and open the report in Microsoft Excel, and then you run Deep
Compare again, ACP will report an error. The script will not be able to update the report
because "it is in use by another application". Simply close the Difference Report before
re-running Deep Compare.

Deep Compare Difference Report

The Deep Compare Difference Report contains many fields of information. Following the screenshot
of a typical report, a table lists all the fields and what information they convey.

Note There is a valid condition in Java Client criteria in which the Value field is null (is not
populated with a value); ACP will report this as "Invalid Criteria Condition: Invalid value
specified." You may ignore this error message.

Important Because Criteria and Privileges are both "business critical", and small changes to
specific criteria and privileges (either general or single-user) in the Production instance
can have consequences, a Best Practice is to always compare all Privileges and
Criteria when running Deep Compare.

v9.3.0.1 93

Agile Configuration Propagation

Deep Compare Report

COMPARE RUN SUMMARY INFORMATION

Source XML Filemame: ACEAE ceport gl

4/552003 1147
0:0:0:33.551

[Total Hember of Diff. 23
[Total Member of Errors:]

UHJECT COMPARE SUMMARY

Objects Arailable at Objects With Objects With
Configuration Type Objects Arailable at Sowrce Target Objects Compared Differemces Errors

[Eaze Class 2 2 2
(Clazs 1 1 1 1 o
[Fubclaz s =) & =) 1 o

SUUHCE OHLY UBJECIS

—

ITARGE] ONLY OBJECIS

—

DIFFERENCES DEITAIL INFORMAIION

Difference Bz Clas:

2] Customers Life Cycls Phases. Inactive <Hlids Enabled Ma Tes
Difference Eiase Class Customers Life Cycls Phases. Inactive <M Status Stamp Color | Navy Furple
Difference Eiuse Class Custamers Life Cyels Phazes Inactive <hta: Diezeription Inactived Inactive
Furce Only Brase Chisz Customers Life Cycle Phazes <M Hame: d <Emphys
Target Only Brase Chisz Customers Life Sycle Phazes <M Hame: <Empiys <

Tource Only Clazs Customers.customers Life Cycle Phazes <Hta: Hame: b <Emphy>
[Target Only Clazs Customers.customers Life Cycle Phazes <Hta: Hame: <Empiys .

[Target Only Clazs Customers.customers Life Cycle Phazes <Hta: Hame: <Empiys a
Difference Clazs Customers.customers User Inkerface Tabz Page Two.Attributes | Datedt Hame: Diatet Diakel
Difference Clazz Customers.customers User Inkerface Tabz Page Two.Attributes | a Diescription <Empiys ddddddddddddddd
Difference Clazs Customers.customers User Inkerface Tabz Page Two.Attributes | a AP Mame a dddddddd
[Target Only Clzs Customers.customers User Interface Tabz Fage Two.dttributes | b Hame: <Emptyr b

Deep Compare Report Sections and Fields

Deep Compare Explanation
Report Sections
and Fields

COMPARE RUN SUMMARY INFORMATION
High-level and summary information.

Source XML Filename Name of the Source (.agl) file used for Deep Compare, e.g. ACP93_export.agl

Target Agile This information will talk about the URL or Target instance being used for comparison purpose.
Connection Info This field also tells who (User ID) has compared the instances.

e.g. URL = http://chandrakantdesk:8888/web; User = admin

Compare Run Date and | Date and Time of Deep Compare report being generated, e.g. 3/11/2009 2:34:24 PM
Time

Duration of Compare How much time is consumed by ACP to compare the SOURCE and TARGET instances?

94 Agile Product Lifecycle Management

http://chandrakantdesk:8888/web

Appendix D

Deep Compare
Report Sections
and Fields

Explanation

e.g. 00:00:01:5.907

Total Number of
Objects Compared

How many objects have been compared?

This gives the total number of SOURCE objects being mapped or matched exactly with TARGET
objects (including RENAME mapping if it is enabled).

Total Number of Objects Compared =3 Objects Compared (OBJECT COMPARE SUMMARY) of
all configurations, e.g. 12

Total Number of
Differences

How many differences found?

Total number of Differences is calculated based on the attribute level comparison after
considering RENAME MAP, SUBOBJECTMAP and IgnoreRef (if you have enabled them in the
Control file).

Total Number of Differences =3 Objects With Differences (OBJECT COMPARE SUMMARY) of
all configurations, e.g. 120

Total Number of Errors

How many Objects are failed in this comparison?

Total Number of Errors =Y Objects With Errors (OBJECT COMPARE SUMMARY) of all
configurations + Processing errors, e.g. 11

OBJECT COMPARE SUMMARY

Statistics of the configuration level.

Configuration Type

Type of Configurations being compared. Please refer enabled Configurations List for Deep
Compare, e.g. Company Profile

Objects Available At
Source

Total number of Objects available at Source. Please note here, this is based on pattern matching
at control file (config.xml), e.g. 110

Objects Available At
Target

Total number of Objects available at Target. Please note here, this is based on pattern matching
at control file (config.xml), e.g. 110

Objects Compared How many objects have been compared in this configuration?
This gives the total number of SOURCE objects being mapped or matched exactly with TARGET
objects (including RENAME mapping if it is enabled), e.g. 34

Objects With How many differences found in this configuration?

Differences Total number of Differences is calculated based on the attribute level comparison after
considering RENAME MAP, SUBOBJECTMAP and IgnoreRef (if you have enabled them in the
Control file), e.g. 23

Objects With Errors How many Objects are failed in this configuration?
Total number of objects failed to compare, e.g. 02

v9.3.0.1 95

Agile Configuration Propagation

Deep Compare
Report Sections
and Fields

Explanation

SOURCE ONLY OBJECTS

"Source only" objects: not found on Target instance. This is based on pattern matching at control file (config.xml).

Configuration Type Type of Configuration being compared. Please refer enabled Configurations List for Deep
Compare, e.g. Class
Name Name of the Object, e.g. ECO

TARGET ONLY OBJECTS

"Target only" objects: not found on Source instance. This is based on pattern matching at control file (config.xml).

Configuration Type Type of Configuration being compared. Please refer enabled Configurations List for Deep
Compare, e.g. Class
Name Name of the Object, e.g.ECO1

DIFFERENCES DETAIL INFORMATION

Detailed information about attribute values.

Status Status can be Difference, Source Only, Target Only(Do not confuse with above Source Only and
Target only, this difference is at attribute level),Not Comparable etc.
This field also talks about Rename Map, Sub Object Map and Ignore References if it is enabled
and matched at the both instances, e.g. Difference
Configuration Type Type of Configuration being compared. Please refer enabled Configurations List for Deep
Compare, e.g. Subclass
Object Name of the Object, e.g. ECO
Context If Configurations are having Ul Tabs and differences are existed in those Tabs, then details of
accessing path will be given, e.g. General Information
Attribute Name of the Attribute, e.g. Date01
Property Name of the property, e.g. Description
Source Value Physical value at source instance, e.g. ABC
Target Value Physical value at target instance, e.g. XYZ
96 Agile Product Lifecycle Management

Appendix E

ACP Exit Codes

Program Program Text
Code

0 Completed with no errors or notes.

-101 Note: Copy completed with notes. See log for details.

-201 Note: Rename completed with notes. See log for details.

-301 Note: Delete completed with notes. See log for details.

-401 Note: Compare completed with notes. See log for details.

1 General error.

1 Unable to open the program's resource bundles.

21 Unable to determine user's locale.

31 Command-line is in error.

32 One or more program properties are in error. Source Name or

Target name is misspelled at command-line.

41 Unable to open the program's log files.

51 Control file is in error.

61 Unable to establish a connection with an Agile instance or an Agile

XML Archive.

101 Encountered one or more errors while copying data.

201 Encountered one or more errors while renaming data.

301 Encountered one or more errors while deleting data.

401 Encountered one or more errors while comparing data.
v9.3.0.1 97

Appendix F
ACP Program Logs

This Appendix includes the following:

VEIDOSE LOG .ottt b bbb bbbttt et 99
CONSOIE (STAOUL) LOG ...vrvrieei ittt s 99
EITOT LOG .ottt 102
PrOCESS LOJ ...ucvuetisieteesetsetes ettt bbb bbb 105

The ACP log files are intended to tell the propagation story.

Verhose Log

The purpose of the verbose log is to provide information about specific changes made by ACP. The
verbose log is produced only when the target data source is an Agile PLM instance. It logs the
objects that are processed and reports the fields whose value has changed.

Console (stdout) Log

The purpose of the console output is to let you see the progress of ACP as it is running. ACP
announces when it is starting and ending a configuration type. It also lets you know the status of
processing for a single configuration type.

As each object of a configuration type is processed, ACP logs the name of the object to the
console. Objects are processed in alphabetical order. The name of the object being processed
provides a rough sense of the progress ACP has made on a single configuration type.

Anatomy of Console (stdout) Log

Item # Description

1 Name of the ACP module running.

2 Version of ACP running.

3 Delete Objects Banner. This is the start of the Delete action processing.

4 Configuration Type. This is the name of the configuration type being processed within a program action (Delete, Rename,
or Copy).

5 Not Configured. If the configuration type is not configured for the action being processed, the program reports that it is not
configured.

6 Configuration Type Status: This is the action processing status for the configuration type. It will indicate if the processing
"Completed” (no errors or warnings), "Completed with warnings" (had warnings), or "Completed with errors" had errors.

v9.3.0.1 99

Agile Configuration Propagation

tem # Description

7 Delete Objects. Shows which object is currently being deleted.

8 Rename Objects Banner. This is the start of the Rename action processing.

9 Rename Objects. Shows which object is currently being renamed. It is also showing the name transformation.

10 Copy Objects Banner. This is the start of the Copy action processing.

11 Copy Objects. Shows which object is currently being copied. If it indicates "<Skipping>" before the name, this indicates
that the object was not matched using the include/exclude patterns.

12 Program Completion Message. This is a human-readable message indicating if the program succeeded, failed, or
completed with warnings.

13 Program Completion Code. This is the machine-readable equivalent to the Program Completion Message. Zero indicates

the program completed with no errors or warnings. A positive number indicates the program completed with errors (and
possibly warnings). A negative number indicates the program completed with warnings (an no errors).

Sample Console (stdout) Log

Agile(TM) CopyConfig (Version ACP 9.3.0.1 (Build 15)) (:)

e e e] e e e e e T e e e e R g T e i e e e T e e e e e e e e e P g

*** Configuration Type: Subclass (:) -- Processing ...

* k%

Not Configured -- Skipped (:)

Configuration Type: Subclass -- ... Completed (:)

e e e] e e e e e T e e e e R g T e i e e e T e e e e e e e e e P g

**% Configuration Type: List -- Processing ...
<Deleting> List: [Subclass #1] (:)
<Deleting> List: [Subclass #2]
<Deleting> List: [Subclass #3]
**%* Configuration Type: List -- ... Completed with errors
100 Agile Product Lifecycle Management

Appendix F

B B] el] et et] et et i et B el B s B g et ™t ™ B el] et] et et et ™ et B B el]t] et B et B el st PR Bt

**xxx%* Configuration Type: Company Profile -- Processing
Not Configured -- Skipped
**xx%* Configuration Type: Company Profile -- ... Completed

**% Configuration Type: Company Profile(:)—— Processing
Not Configured -- Skipped (:)

***x Configuration Type: Company Profile ... Completed(:)

e e e] e e e e e T e e e e P g I e R T e e T e e e e e e e e e = P g W

*** Configuration Type: List -- Processing

<Renaming> List: [Target List ==> Source List](:)
<Renaming> List: [0ld List ==> New List]

*** Configuration Type: List -- ... Completed with errors

e e e] e e e e e T e e e e R g T e i e e e T e e e e e e e e e P g

*** Configuration Type: Subclass -- Processing
Not Configured -- Skipped
*** Configuration Type: Subclass -- ... Completed

e e e] e e e e e T e e e e P g I e R T e e T e e e e e e e e e = P g W

*** Configuration Type: Company Profile(:)—— Processing
Not Configured -- Skipped (:)

**% Configuration Type: Company Profile -- ... Completed (:)
*** Configuration Type: Class -- Processing

<Skipping> Class: [Changes.Change Orders] (:j

v9.3.0.1 101

Agile Configuration Propagation

<Skipping> Class: [Changes.Change Requests]

[
<Copying> Class: [Changes.Deviations]
<Skipping> Class: [Changes.Manufacturer Orders]
[

<Skipping> Class: [Changes.Price Change Orders]

I I i e I I i ot R et T et et e I e T R g B e I I e e e e e N e e N e N e e e e e g R
<Skipping> Class: [User Groups.User groups]
<Skipping> Class: [Users.users]

*** Configuration Type: Class -- ... Completed with errors
*** Configuration Type: Subclass -- Processing

Not Configured -- Skipped
**xx Configuration Type: Subclass -- ... Completed

e e e] e e e e e T e e e e P g I e R T e e T e e e e e e e e e = P g W

CopyConfig FAILED - Encountered one or more errors while renaming data.

(201)

Error Level = 201 (:j

Error Log

The purpose of the error log is to provide detailed information regarding an error or warning
reported by ACP.

Since ACP is not an interactive process, the error information must provide additional information in
its error messages.

For instance, ACP provides process context. The process context provides information about what
object was being processed when the error occurred. It may even provide more specific information
about the object if ACP was currently processing subobject data for the object.

In addition to the process context, it tries to provide error context. The error context provides clues
about exactly what ACP was trying to do at the time the error was encountered.

Finally, ACP provides the cause for the error. That is, it reports the error message reported to it.
Sometimes the error message will come from the Agile PLM server and other times ACP will report
an error itself.

Error Messages

The "Error header" has been modified to be a non-repeating block of text at the beginning of the
Error log.

102 Agile Product Lifecycle Management

Appendix F

======== ER R O R (Header) ========

Progran Hame ACP CopyConfig

Program Version: ACP9224.14, Build #14

Source Data Source Agile XML Archive: export_cognition. agl
Target Data Source Agile Instance: URL = http:-~adtwin0Ol . ag

======== ER R O R (Header) ========

======== ER R O R (Begin) ========

Process Context:

Propagation Action: Copy

Configuration Type AutoNunber (Associations)
Configuration Object Demo ECO

Configuration Object Action: Update Object

Object Hame Demo ECO

Error Context:

Hot Available.

Error Cause:

Unable to resolve the following Where Used references:
* [Demo ECO]
======== ER R O R (End) ========

@ New error message when a subobject map is not used during a propagation
@ Error message logged when an regular expression is not matched during a propagation

= New error messages added for Type Filtering

Anatomy of the Error Log

[tem # Description

Header | Program name, version, and data sources.

1 Start of Error or Warning Message. Signifies the start of a single error or warning.

2 Process Context. The process context section provides clues about what object ACP was processing at the time of the
error or warning

3 Propagation Action, Configuration Type, Configuration Object Context. These three lines of process context provide all of
the information you need to know in order to know exactly which object was being processed and action was being
performed.

4 Additional Context. Additional context will vary with each error or warning. It attempts to describe within an object what

information ACP was working with.

5 Error or Warning Context. The error or warning context provides information about what ACP was doing at the time the
error or warning occurred.

6 Error or Warning Cause. The error or warning cause is the specific message issued by the application at the point where
the error or warning was detected.

7 End of Error or Warning Message. Signifies the end of a single error or warning.

v9.3.0.1 103

Agile Configuration Propagation

Sample Error Log

======== Program Properties —=======

Program Name: ACP CopyConfig

Program Version: ACP 9.3.0.1 (Build 15)

Source Data Source: Agile XML Archive: export_dev.agl
Target Data Source: Agile Instance:

URL = http://localhost:8888/web ;
User = admin

@ ======== F R R O R (Begln) —=======
Process Context: (:)

Propagation Action: Copy

Configuration Type: Criteria (:)

Configuration Object: All File Folders Checked out by Me
Configuration Object Action: Update Object

Object Name: (:) All File Folders Checked out by Me
Object Table Name: Conditions

Object Table Action: Update

Error Context: (:)

Unable to update the "All File Folders Checked out by Me" row of the
Condition table for the configuration object.

Error Cause: (:)

Object already in use by Privileges.Checkin for File Folders.
—======= ERROR (End) —======= @

====== W A RNTING (Begin) —===== @

Process Context: (:)

104 Agile Product Lifecycle Management

http://localhost:8888/web

Appendix F

Propagation Action:

Configuration Type:
Configuration Object:

Configuration Object Action:

Object Name: (:)

List Action:
List Entry Action:
List Entry Name:

Warning Context: (:)

Not Available.

Warning Cause: (:)

The List Entry "Audit - External"
"QCR Category".

====== W A RNTING

Process Log

Copy

List (:)

QCR Category
Update Object

QCR Category

Update List Entries

Delete

QCR Category.Audit - External

could not be deleted from the List
The List Entry has been disabled instead.

The purpose of the process log is to capture all of the information pertaining to processing.

All command line parameters, program properties, and control file settings are written to the
process log. This helps to validate the correctness of the settings in place.

As objects are processed, an entry is logged for the object along with the action taken by ACP and
the result of the action.

Finally, the process log summarizes the processing in a set of statistics providing counts as well as
the amount of time it took to process.

Anatomy of the Process Log

Item #

Description

Start of Program banner. Signifies the start of a single run of ACP.

2 Name of the ACP module running.

3 Version of ACP running.

4 The date and time that the current run of ACP was started.

5 Program Properties Section: The properties are a means to influence the business logic that ACP uses with regard to
configuration types. The amount of influence on business logic varies by configuration type..

6 Control Setting Section: The configuration values specified in the control file.

7 Configuration Type Name. Each configuration type has its own subsection within the Control Setting Section.

v9.3.0.1

105

Agile Configuration Propagation

Item #

Description

File Prefix Setting. This is the file prefix used for the XML files generated by ACP export. The same prefix will be used by
ACP import. ACP allows this setting to be configured; however, it should never need to be changed.

Objects Per File Setting: This is the number of objects ACP export will write to a single XML file for the configuration type.
The default for all configuration types is 1000. Should you have a configuration type that exceeds 1000 and you want to
write all of the objects to a single file, you can set the value in the control file.

10

Include Patterns: The list of include patterns configured for the configuration type. These are the regular expressions used
to match the object names of the current configuration type.

11

Dependent Configuration Type. Some configuration types have dependent configuration types. The dependent
configuration types exist to allow a configuration type to be processed in multiple passes. Typically, dependent
configuration types will have the same name as the configuration type they depend on with a suffix such as
"(Associations)".

12

Not Configured (Primary Configuration Type). If a configuration type is not configured to be propagated, then it is marked
as not configured to make it clear that it is not being propagated.

13

Not Configured (Dependent Configuration Type). Dependent configuration types assume the same configuration
information as the configuration type they depend on. If the primary configuration type is not configured, then neither will
the dependent configuration type be configured.

14

Sub-object Mappings. Some configuration types allow for sub-object mappings. The sub-object mapping section shows
what type of sub-object is being mapped, the name of the object whose sub-objects are being mapped and then the list of
mappings.

15

Configuration Type Attributes. Some configuration types may have attributes in addition to the common attributes
(file_prefix and objects_per_file). For example, lists have the case_sensitive_list_entries.

16

Exclude Patterns. The list of exclude patterns configured for the configuration type. These are the regular expressions
used to match the object names of the current configuration type. If the object name matches an exclude pattern, ACP will
skip the object.

17

Name Maps. The list of name mappings for the configuration type that ACP will use to rename objects in the target
instance.

18

Delete Names. The list of objects for the configuration type to delete from the target instance.

19

Ignore Reference Patterns. Some configuration types allow ignore reference patterns to be specified. These patterns are
used to quash error messages when an object with a name matching one of the patterns cannot be resolved.

20

Program Actions. The program actions section simply indicates which program actions are configured. The available
actions are Copy, Rename, and Delete.

21

Configuration Type Detail. Each configuration type that is propagated has a detailed section showing the action taken for
each object of that configuration type. The name of the configuration type is listed at the beginning of the section.
Configuration types that have not been configured will not have a detail section. A separate configuration type detail
section exists for each program action (Copy, Rename, and Delete) if configured.

22

Action. The actual action taken by ACP.

Skipped - Was excluded by the include/exclude patterns specified.
Created - The object is new in the target.

Updated - The object already existed in the target.

Renamed - The object's name has changed in the target.

106

Agile Product Lifecycle Management

Appendix F

ltem # Description

Deleted - The object has been deleted from the target.

23 Result. Indicates how the action performed.

No Action Taken - The target object remains unchanged.

Succeeded - The target object has been changed successfully.

Warning - The target object has been changed successfully, but there were notes to be aware of.

Failed - An error has occurred while processing the object. The object may or may not have been updated.

24 Configuration Object. The name of the configuration object being processed.

25 Pattern Matching Statistics. The pattern matching statistics help you understand how well your patterns (regular
expressions) are matching the objects in the source instance.

26 Copy Statistics (also Rename Statistics and Delete Statistics). The copy statistics section summarizes the object
processing for the configuration type. It is an easy way to find out how many objects were propagated as well as the
number of objects that are available to propagate.

27 No objects found. Indicates that no objects were found for the configuration type. This provides a clear statement to this
effect rather than not having anything listed at all.

28 Error Messages. A brief description of error messages appear in the Process Log. Please refer to the Error Log for more
detailed information about errors.

29 End of Program banner. Signifies the end of a single run of ACP.

Sample Process Log

================== Start of Program =================== @

Agile(TM) CopyConfig (:) (Version ACP 9.3.0.1 (Build 15))(:)

Run Date: Nov 03, 2009 9:16:34 PM (:)

-debug [1]
-D [acp.method=export, src.ref=ga_was,
tgt.ref=ga_was]

Property File [1]

——-——-———=—=——=—=—=—== Program Properties :::::::::::::::::::@
Miscellaneous Properties

global .properties.filename: (program)

common .properties.filename: (program)

v9.3.0.1 107

Agile Configuration Propagation

Program Information

acp.program.name: ACP CopyConfig (program)
acp.program.version: Version ACP 9.3.0.1 (Build 15) (program)
acp.run.date: 20091103 (program)
acp.run.time: 074631 (program)
acp.run.datetime: 20091103_074631 (program)
acp.method: export (command-1line)
acp.debug: false (program)
acp.verbose: false (program)
Objects
objects.suppress.skipped: true D:\Agile\ACPWork\project\

project.properties)

Source Data Source

src.ref: ga_was (command-line)
src.type: agile (program)
src.name (ga_was.name) : QA Was
(D:\Agile\ACPWork\project\project.properties)
src.url (ga_was.url): http://10.3.3.21:9080/Aqile
(D:\Agile\ACPWork\project\project.properties)
src.username (ga_was.username) : propagation

src

.password.mode

(D:\Agile\ACPWork\project\project.properties)
(ga_was .password.mode) : cleartext

(D:\Agile\ACPWork\project\project.properties)

Target Data Source

Jga_was
xml
QA Was

(command-1line)
(program)

(D:\Agile\ACPWork\project\project.properties)

tgt.ref:

tgt.type:

tgt.name (ga_was.name) :
tgt.xml (ga_was.xml) :

export_ga_was.agl

(D:\Agile\ACPWork\project\project.properties)

Control File
control.filename:

Process Log
log.process.filename:

log.process.open.mode:
log.process.format:

Error Log
log.error.filename:

config.xml
export.log
overwrite

text

export.log

(program)

(s{acp.method}.log)
(program)
(program)
(program)

(s{acp.method}.log)

108

Agile Product Lifecycle Management

http://10.3.3.21:9080/Agile

Appendix F

(program)
log.error.open.mode: overwrite (program)
log.error.format: text (program)

Verbose Log
log.verbose.filename: exportVerbose.log
(${acp.method}Verbose.log) (program)
log.verbose.open.mode:

e e e] e e e e e T e e e e R g T e i e e e T e e e e e e e e e P g

Configuration Type: Account Policy (:)
File Prefix: account_policy
Objects Per File: (:) 1000

Include Patterns: L*

Configuration Type: Account Policy (Associations) (:j
File Prefix: account_policy_
Objects Per File: 1000
Include Patterns: L

Configuration Type: AutoNumber (Not Configured) (:>

Configuration Type: AutoNumber (Associations)

(Not Configured) (:j

Configuration Type: Base Class
File Prefix: base_class__
Objects Per File: 1000
Include Patterns: L

Life Cycle Phase Mappings for "Manufacturers":

1) [Approved] ==> [Active]

Configuration Type: Character Set
File Prefix: character_set_
Objects Per File: 1000

v9.3.0.1 109

Agile Configuration Propagation

Include Patterns: L*
Configuration Type: Class

File Prefix: class_

Objects Per File: 1000

Include Patterns: ¥

e e e] e e e e e T e e e e R g T e i e e e T e e e e e e e e e P g

Configuration Type: List
File Prefix: list_
Objects Per File: 1000

Case Sensitive List Entries: Yes (true) (:j
Include Patterns: Lx

Exclude Patterns: Lx

Name Mappings:
1) Target List ==> Source List

2) 0ld List ==> New List @

1) Subclass #1

2) Subclass #2
3) Subclass #3

Delete Names:

e e e] e e e e e T e e e e P g I e R T e e T e e e e e e e e e = P g W

Configuration Type: User (Not Configured)

Ignore Reference Patterns: Test.*
Configuration Type: User (Associations) (Not Configured)
Configuration Type: User Group

File Prefix: user_group_

Objects Per File: 1000

Include Patterns: Lx

Ignore Reference Patterns: Test.*
Configuration Type: User Group (Associations)

File Prefix: user_group_

110 Agile Product Lifecycle Management

Appendix F

Objects Per File: 1000
Include Patterns: Lx

e e e] e e e e e T e e e e R g T e i e e e T e e e e e e e e e P g

=SS ======= Program Actions oSS =======

Copy Objects: Configured

Rename Objects: Not Configured
Delete Objects: Not Configured

Action Result Configuration Object
Create Succeeded Acme 1-5 List

Create Succeeded Acme Authoring Tool

Create Succeeded Acme Business Unit

Create Succeeded Acme Connector Gender
Create Succeeded Acme Eng Lib Category
Create Succeeded Acme FA Child/Component
Create Succeeded Acme FA Closure Code
Create Succeeded Acme FA Component Priority
Create Succeeded Acme FA Configuration Type
Create Succeeded Acme FA Failure Code
Create Succeeded Acme FA Failure Mode
Create Succeeded Acme FA Priority

Create Succeeded Acme FA Root Cause Code
Create Succeeded Acme FA Severity

Create Succeeded Acme FA Symptom Code
Update No Action Needed Action Status

Update No Action Needed AML Preferred Status

e e e] e e e e e T e e e e P g I e R T e e T e e e e e e e e e = P g W

Update No Action Needed Priority

Update No Action Needed Problem Report Category
Update Succeeded Product Line

Update No Action Needed Product Line List
Update No Action Needed Product Lines (PSR)
Update No Action Needed Program Type List
Update No Action Needed Programs

Update No Action Needed Project Name

Update No Action Needed PSRs

Update No Action Needed QCR Category

v9.3.0.1 111

Agile Configuration Propagation

Update No Action Needed QCRs

e e e] e e e e e T e e e e R g T e i e e e T e e e e e e e e e P g

Update No Action Needed User Groups
Update No Action Needed Users
Update No Action Needed Yes/No Cost List

Pattern Matching Statistics <:>

Lx 251
Copy Statistics

Objects Attempted: 251

Objects Skipped: 0

Objects No Action Needed: 251

Objects Not Licensed: 0

Objects Created:
Objects Updated:
Objects with Warnings:
Objects Failed:

o O O O

B B] el] et et]t et et i et el B s st B g et ™t ™ B] et] et et et ™ et B B el]t] et B et B e st PR Bt ™07

(::) No objects found.

Pattern Matching Statistics
Lx 0
Copy Statistics
Objects Attempted:
Objects Skipped:
Objects No Action Needed:
Objects Not Licensed:
Objects Created:
Objects Updated:
Objects with Warnings:
Objects Failed:

O O O O O O o o

e e e] e e e e e T e e e e R g T e i e e e T e e e e e e e e e P g

112 Agile Product Lifecycle Management

Appendix F

=========================== (Class =========================
Action Result Configuration Object
Update No Action Needed Changes.Change Orders
Update No Action Needed Changes.Change Requests
Update Succeeded Changes.Deviations
Update No Action Needed Changes.Manufacturer Orders
Update No Action Needed Changes.Price Change Orders
Update No Action Needed Changes.Site Change Orders
Update Succeeded Changes.Stop Ships
Update No Action Needed Customers.customers
Update No Action Needed Declarations.Homogeneous Material
Declarations
Update Completed with Errors Declarations.IPC 1752-1
Declarations

1) ERROR: Duplicate name entered.

2) ERROR: Duplicate name entered.
Update Completed with Errors Declarations.IPC 1752-2
Declarations

1) ERROR: Duplicate name entered.

2) ERROR: Duplicate name entered.
Update No Action Needed Declarations.JGPSSI Declarations
Update No Action Needed Declarations.Part Declarations
Update No Action Needed Declarations.Substance Declarations
Update No Action Needed Declarations.Supplier Declarations
of Conformance
Update No Action Needed Discussions.discussions
Update No Action Needed File Folders.File folders
Update No Action Needed File Folders.Historical Report File
Folders
Update Succeeded Items.Documents
Update Succeeded Items.Parts
Update Succeeded Manufacturer Parts.Manufacturer
parts
Update Completed with Errors Manufacturers.manufacturers

1) ERROR: Attribute name must not contain dot.
2) ERROR: Attribute name must not contain dot.
3) ERROR: Attribute name must not contain dot.

Update No Action Needed Packages.packages

Update No Action Needed Part Groups.Part groups
Update No Action Needed Prices.Published Prices
Update No Action Needed Prices.Quote Histories

v9.3.0.1 13

Agile Configuration Propagation

Update No Action Needed Product Service Requests.Non-
Conformance Reports
Update No Action Needed Product Service Requests.Problem
Reports
Update Succeeded Programs.Activities
Update Succeeded Programs.Gates
Update No Action Needed Quality Change Requests.Audits
Update No Action Needed Quality Change Requests.Corrective
and Preventive Actions
Update No Action Needed Reports.Custom Reports
Update No Action Needed Reports.External Reports
Update No Action Needed Reports.Standard Reports
Update Succeeded Requests for Quote.Requests for
quote
Update No Action Needed RFQ Responses.RFQ responses
Update No Action Needed Sites.sites
Update Completed with Errors Sourcing Projects.Sourcing projects
1) ERROR: Duplicate name entered.
2) ERROR: Duplicate name entered.
Update No Action Needed Specifications.specifications
Update Completed with Errors Substances.Materials
1) ERROR: Duplicate name entered.
2) ERROR: Duplicate name entered.
Update Completed with Errors Substances.Subparts
1) ERROR: Duplicate name entered.
2) ERROR: Duplicate name entered.
Update No Action Needed Substances.Substance
Groups
Update No Action Needed Substances.substances
Update Succeeded Suppliers.suppliers
Update No Action Needed Transfer Orders.Automated
Transfer Orders
Update No Action Needed Transfer Orders.Content
Transfer Orders
Update No Action Needed User Groups.User groups
Update No Action Needed Users.users
Pattern Matching Statistics
LR 49
Copy Statistics
Objects Attempted: 49

114

Agile Product Lifecycle Management

Appendix F

Objects
Objects
Objects
Objects
Objects
Objects
Objects

Skipped:

No Action Needed:

Not Licensed:
Created:
Updated:
with Warnings:
Failed:

o O VW O O bk O

Result

User Group (Associations)

No objects found.

Pattern Matching Statistics

Configuration Object

Lx 0
Copy Statistics

Objects Attempted: 0

Objects Skipped: 0

Objects No Action Needed: 0

Objects Not Licensed: 0

Objects Created: 0

Objects Updated: 0

Objects with Warnings: 0

Objects Failed: 0
=================== Role (Associations) ==================
Action Result Configuration Object
Skipped (Propagation) Administrator
Skipped (Propagation) User

Administrator
Skipped (Restricted) Discussion
Participant

Skipped (Restricted) Material Provider
Skipped (Restricted) My User Profile
Skipped (Restricted) Price Collaborator
Skipped (Restricted) RFQ Responder
Skipped (Restricted) Supplier Manager
Update Succeeded Acme Basic User
Update Succeeded Acme Business Override
Update Succeeded Acme FA CDO Manager
Update Succeeded Acme FA Engineer
Update Succeeded Acme FA Logistics

v9.3.0.1

115

Agile Configuration Propagation

Update

Update

Update

Update

Update

Update

Update

Update

Update

Update

Update

Update

Update

Skipped
Skipped
Skipped
Skipped
Skipped
Skipped
Skipped
Skipped
Skipped
Skipped
Skipped
Skipped
Skipped
Skipped
Skipped
Skipped
Skipped
Skipped
Skipped
Skipped
Skipped
Skipped
Skipped
Skipped
Skipped
Skipped
Skipped
Skipped
Skipped
Skipped
Skipped

Succeeded
Succeeded
Succeeded
Succeeded
Succeeded
Succeeded
Succeeded
Succeeded
Succeeded
Succeeded
Succeeded
Succeeded
Succeeded

Acme FA Manager

Acme FA Manufacturing QE
Acme FA TAC/HTTS Creator
Acme IT Override

Acme MCAD Full Library Viewer
Acme MCAD Library Creator
Acme MCAD Limited Library Viewer
Acme PX Role

Acme ReadOnly Partner
Acme ReadOnly Unrestricted
Acme_1

Acme_2

Acme_3 [do not use]
Administrator

Approve / Reject

Change Analyst

Compliance Manager
Component Engineer
Content Manager
Discussion Administrator
Discussion Participant
Enforce Field Level Read
Engineer

Engineer Unrestricted
Engineering Administrator
Engineering Manager
Executive

Folder Administrator
Folder Manager
Incorporator

Item Content Manager
Manufacturer Content Manager
My File Folder

My User Profile
Organization Manager
Partner

Portfolio Analytics User
Price Administrator

Price Manager

Product Content Read Only
Program Administrator
Program Manager

Program Team Member
Quality Administrator

116

Agile Product Lifecycle Management

Appendix F

Skipped Quality Analyst

Skipped Quality Analytics User
Skipped Report Manager

Skipped Report User

Skipped Resource Pool Administrator
Skipped Resource Pool Owner
Skipped RFQ Manager

Skipped Sourcing Administrator
Skipped Sourcing Project Manager
Skipped User Administrator
Skipped View Historical Report

Pattern Matching Statistics

Acme. *: 18
Copy Statistics
Objects Attempted: 68
Objects Skipped: 50
Objects No Action Needed: 0
Objects Not Licensed: 0
Objects Created: 0
Objects Updated: 18
Objects with Warnings: 0
Objects Failed: 0

e e e] e e e e e T e e e e R g T e i e e e T e e e e e e e e e P g

v9.3.0.1 117

Agile Configuration Propagation

118 Agile Product Lifecycle Management

	Oracle Copyright
	Welcome to ACP
	Overview
	Purpose of ACP
	Functions of ACP
	Who will Use ACP?
	Who should not Use ACP?
	Improper Uses of ACP

	System Requirements for ACP
	Platform Requirements
	Licensing Requirements
	Environmental Requirements

	Using this Manual
	What's New in ACP
	ACP 9.3.0.1
	What's New in ACP 9.3

	Changes to the Control File Schema
	Server Portals not supported (Copy, Rename, Delete)
	Case Sensitive List Entries attribute removed (Copy)
	Changes in Rename section due to API Name/User ID
	Rename by API Name
	Rename by User ID
	Rename no longer supported

	Changes to Subobject Maps section due to API Name
	Subobject Map object reference by API Name
	Subobject Map subobject identified by API Name
	Subobject Map no longer supported

	ACP Terms
	Instance Terms
	Function Terms
	Data Terms
	Machine Terms
	File Terms
	Process Terms
	User Terms

	Use Case
	Configuration Management
	Configuration Tasks
	Schematic of PLM Configuration
	Validate Agile PLM Data
	Create a Project
	Configure Agile PLM
	Export Admin Data
	Import Admin Data for Testing
	Test Admin Data Changes
	Prepare for Dry Run
	Execute Dry Run
	Execute Go Live
	Audit Configuration Changes

	ACP Product Information
	Installation of ACP
	PLM Client Application
	Command-line User Interface

	PLM SDK Application
	Propagation Tool
	Propagation Strategies
	Propagation Method

	A Control File drives every Propagation or Comparison
	API Name-based Rename and Subobject Maps

	ACP Actions and Uses of the Control File
	Copy Action (and section of Control File)
	Rename Action (and section of Control File)
	Delete Action (and section of Control File)
	Subobject Maps (section of Control File)
	Ignore References (section of Control File)
	Name Compare and Deep Compare

	Configuration Types
	Non-Propagating Administrator Objects
	Type Filtering on Configuration Types
	Object Matching (Mapping)
	Limitations of Mapping

	Processing Order in ACP
	Processing Order Rules
	Copy Rules
	Rename Rules
	Delete Rules

	Configuration History
	Internationalization

	User Requirements
	Standard PLM Privileges that can Access ACP
	Tailored Roles for the ACP User
	Privileges for the ACP User

	Installing ACP
	Required Information
	Operating System
	Agile PLM Version
	Application Server
	Installation Directory
	Work Directory

	Prerequisites
	Java Runtime Environment
	ACP Installer

	Windows Installation
	Extract
	Run Installer
	Open Command Window
	Go to ACP Installer Directory
	Run the Installer Script
	1. Set JAVA_HOME
	2. Run Installation Script
	3. Answer Prompts

	UNIX (Linux) Installation
	Extract
	Make Executable
	Run Installer
	Open Terminal Window
	Go to ACP Installer Directory
	Run the Installer Script
	1. Set JAVA_HOME
	2. Run Script
	3. Answer Prompts

	Postinstallation Tasks
	ACP-Installed Directories
	ACP Client-Installed Directory Structure
	ACP Work Directory Structure

	Running ACP
	ACP Projects
	ACP Project Directories
	Sample Project Directory

	Creating Projects
	Existing Project
	New Project

	ACP Properties
	ACP Control File
	ACP Scripts
	ACP Exit Codes
	ACP Log Files
	Summary

	Configuring the ACP Control File
	ACP Control File
	XML Format
	Element
	Empty Element
	Simple-Content Element
	Element-Content Element
	Mixed-Content Element
	Element with Attributes

	Root Element or Document Element
	Element Tags
	Element Attributes
	Comments in XML
	Special Characters

	Business Logic Attributes in the Control File
	Objects per File
	File Prefix
	Criteria Force Update
	Autonumber Force Update
	Force Delete List Entry
	New User Password
	Process Extension Association Rule
	User Association Rule

	Control File Sections
	Copy (<copy>) Section
	Configuration Types in Copy Section
	Include Patterns
	Exclude Patterns
	Regular Expressions
	Putting it all together in Copy section

	Rename (<rename>) Section
	Configuration Types in Rename Section
	Key Maps
	Source Key
	Target Key

	Putting it all together in Rename section

	Delete (<delete>) Section
	Configuration Types in Delete Section
	Name

	Putting it all together in Delete section

	Ignore References (<ignore_references>) Section
	Configuration Types in Ignore References Section
	Patterns
	Regular Expressions
	Putting it all together in Ignore References section

	Subobject Maps (<subobject_maps>) Section
	Configuration Types in Subobject Maps Section
	Object Reference
	Subobject Type
	Flex Attribute Rename
	Key Maps
	Source Key
	Target Key

	Putting it all together in Subobject Maps section

	ACP Configuration Types
	Supported ACP Configuration Types
	Configuration Types and Match Keys
	Renaming Subobjects
	Configuration Types as Evaluated by Deep Compare
	Log and Report Files for Deep Compare

	Java Regular Expressions
	Special Characters
	XML Special Characters
	Java Regular Expression Special Characters

	Regular Expression Examples

	ACP Properties
	Property Sources
	Defining Properties
	Java-style Property
	Property References
	Indirect References

	Properties
	Agile-owned Properties
	Agile-defaulted Properties
	Customer-owned Properties

	ACP Scripts
	Working Directory
	Java Home
	Running Scripts
	ACP Launcher

	Propagation Scripts
	export
	import

	Version Script
	version

	Project Management Script
	create_project

	Password Encryption Script
	encryptpwd

	Object Name Comparison Script
	name_compare

	Object Detail Comparison Script
	deep_compare
	How to Generate the Deep Compare Difference Report
	Command:
	Example:
	Console Message:

	Deep Compare Difference Report
	Deep Compare Report Sections and Fields

	ACP Exit Codes
	ACP Program Logs
	Verbose Log
	Console (stdout) Log
	Anatomy of Console (stdout) Log
	Sample Console (stdout) Log

	Error Log
	Error Messages
	Anatomy of the Error Log
	Sample Error Log

	Process Log
	Anatomy of the Process Log
	Sample Process Log

